Software Quality Assurance guidelines for e-navigation systems

04 April 2014
Seojeong Lee
Korea Maritime and Ocean University
Agenda

- SQA needs of e-navigation systems
- IMO progress
 - NAV58, NAV59 and SIP
- Scope of SQA
- Considerations to be improved
- Expectations
- Conclusions
SQA needs of e-navigation systems

- Properties of e-navigation systems
 - Information system composed of software components, data/information and its structure, network protocol as well as hardware components
 - Qualified e-navigation software service for all stakeholders
 - Onboard as well as shore-side users - Masters, pilots, fishermen and recreational boaters, ports
 - Federal, government partners, maritime user community, private companies
Outlining the need to include software quality assurance as part of the ongoing e-navigation gap and cost-benefit analysis process that has to be conducted.

Covering the concept of SQA, the reason why e-navigation considers SQA and practices in other areas such as military and automobile.
NAV59/6/2 (Development of draft SQA guidelines for e-navigation)

- Safety and SQA
- Scope of specification
- Definition of e-navigation SQA
- Means for application of ISO standards
- Relationship with HCD, Usability and CMDS
- Means for certification of SQA
SIP progress - deliverables

Gap Analysis

Risk Analysis
Formal Safety Assessment

Solutions
- 9 solutions
- Proporitised

RCOs
(Risk Control Options)

Considering specific RCOs to develop system of each solution
During the FSA, a number of Risk Control Options (RCOs) in order to assess safety

- **RCO 1:** Integration of navigation information and equipment including improved *software quality assurance*
- **RCO 2:** Bridge alert management
- **RCO 3:** Standardized mode(s) for navigation equipment
- **RCO 4:** Automated and standardized ship-shore reporting
- **RCO 5:** Improved reliability and resilience of onboard PNT systems
- **RCO 6:** Improved shore-based services
- **RCO 7:** Bridge and workstation layout standardization
Five e-navigation solutions have been prioritized as part of the present SIP (Strategy Implementation Plan)

- **S1**: improved, harmonized and user-friendly bridge design;
- **S2**: means for standardized and automated reporting;
- **S3**: improved reliability, resilience and integrity of bridge equipment and navigation information;
- **S4**: integration and presentation of available information in graphical displays received via communication equipment;
- **S9**: improved Communication of VTS Service Portfolio
<table>
<thead>
<tr>
<th>Solution</th>
<th>Sub-Solution</th>
<th>RCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improved, harmonized and user-friendly bridge design</td>
<td>S1.1 Ergonomically improved and harmonized bridge and workstation layout.</td>
<td>RCO 7 Bridge and work station lay-out standardization</td>
</tr>
<tr>
<td></td>
<td>S1.4 Standard default settings, save/recall settings, and S-mode functionalities on relevant equipment.</td>
<td>RCO3 Standardized mode(s) for navigation equipment</td>
</tr>
<tr>
<td></td>
<td>S1.5 All bridge equipment to follow IMO BAM (Bridge Alert Management) performance standard</td>
<td>RCO2 Bridge alert management</td>
</tr>
<tr>
<td></td>
<td>S1.6 Information accuracy/reliability indication functionality for relevant equipment</td>
<td>RCO1 Integration of navigation information and equipment including improved software quality assurance</td>
</tr>
<tr>
<td></td>
<td>S1.7 Integrated bridge display system (INS) for improved access to shipboard information</td>
<td></td>
</tr>
</tbody>
</table>
SIP progress-Solution to RCO

<table>
<thead>
<tr>
<th>Solution</th>
<th>Sub-Solution</th>
<th>RCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3</td>
<td>Improved reliability, resilience and integrity of bridge equipment and navigation information</td>
<td>RCO1</td>
</tr>
<tr>
<td></td>
<td>S3.1 Standardized self-check/built-in integrity test with interface for relevant equipment (ex.: bridge equipment)</td>
<td>Integration of navigation information and equipment including improved software quality assurance</td>
</tr>
<tr>
<td>S3.2</td>
<td>Standard endurance, quality and integrity verification testing for relevant bridge equipment, including software</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S3.3 Perform information integrity tests based on integration of navigational equipment – application of INS integrity monitoring concept</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S3.4 Improved reliability and resilience of onboard PNT information by integration with internal and external systems</td>
<td>RCO5</td>
</tr>
<tr>
<td></td>
<td>Improved reliability and resilience of onboard PNT systems</td>
<td></td>
</tr>
<tr>
<td>Solution</td>
<td>Sub-Solution</td>
<td>RCO</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>-----</td>
</tr>
<tr>
<td>S4</td>
<td>S4.1.2</td>
<td>RCO1</td>
</tr>
<tr>
<td></td>
<td>Standardized interfaces for data exchange should be developed to support transfer of information from communication equipment to navigational systems (INS)</td>
<td>Integration of navigation information and equipment including improved software quality assurance</td>
</tr>
<tr>
<td></td>
<td>S4.1.3</td>
<td>RCO6</td>
</tr>
<tr>
<td></td>
<td>Provide mapping of specific services (information available) to specific regions (e.g. maritime service portfolios) with status and access requirements.</td>
<td>Improved shore-based services</td>
</tr>
<tr>
<td></td>
<td>S4.1.6</td>
<td>RCO1</td>
</tr>
<tr>
<td></td>
<td>Provide quality assurance process to ensure that all data is reliable and is based on a consistent common reference system (CCRS) or converted to such before integration and display.</td>
<td>Integration of navigation information and equipment including improved software quality assurance</td>
</tr>
</tbody>
</table>
Current status

- SQA guidelines for e-navigation systems
 - Submitted to
 - NAV correspondence group report
 - Annex 6
To ensure that **software requirements** from relevant **regulations**, from applicable **standards**, and from **stakeholders** are fulfilled throughout the **life cycle** of an **e-navigation system** and the life cycle of any **related data** used within software.
the stages and activities spanning the life of the software/data product - from the conception of its requirements to the termination of its use;

The life cycle covers the stages of conception, analysis, design, operation, maintenance and termination.
Software Quality Models

- **Product Quality**
 - ISO/IEC 9126-4, ISO/IEC 25010
 - GS (Rep. of Korea)

- **Data Quality**
 - ISO/IEC 25012, ISO/IEC 25024

- **Quality in Use**
 - ISO/IEC 25060

- **Process Quality**
 - ISO/IEC 12207, CMMI, SPICE
 - SP (Rep. of Korea)

Life cycle related:
- ISO/IEC 15288
- ISO/IEC 15026
Software Quality Models

Product quality model

- Functionality
 - Are the required functions available in the software?
- Portability
 - How easy is it to transfer the software to another environment?
- Maintainability
 - How easy is it to modify the software?
- Efficiency
 - How efficient is the software?
- Reliability
 - How reliable is the software?
- Usability
 - Is the software easy to use?

ISO/IEC 9126
Software Quality Models

- Quality-in-use model

![Diagram of Quality-in-use model]

- Effectiveness
 - Effectiveness

- Efficiency
 - Efficiency

- Satisfaction
 - Usefulness
 - Trust
 - Pleasure
 - Comfort

- Freedom from risk
 - Economic risk mitigation
 - Health and safety risk mitigation
 - Environmental risk mitigation

- Context coverage
 - Context completeness
 - Flexibility
Software Quality Models

- Data quality
 - Applied to ensure the qualified data involved in software
 - used by software
 - software produces
 - Depending on the specialties of e-navigation systems, data quality might be important issue.
 - Some of software problems caused by data issue
Software Quality Models

Process quality

- Developing S/W
- Qualified process
- Qualified S/W
Considerations to be improved

- Applying Quality Models
 - Specific SQA guidelines
 - For onboard/shore-based
 - For Specific equipment
 - Sustainable amendments
 - By practices
 - By stakeholders’ requirements
Considerations to be improved

- Relevant concepts
 - HCD (Human Centred Design) and U-TEA (Usability Testing, Evaluation & Assessment)

Links between the SQA, HCD and U-TEA guidelines

Source: Draft HCD guidelines on e-navigation systems
Considerations to be improved

- Relevant concepts
 - **S-100** will support a great variety of data sources, products and services
 - CMDS

![Diagram showing various concepts related to S-100 and CMDS]

Source: IHO
Expectations

- To provide the benefits for all stakeholders, regarding on software/system/software service and data used in software through the life cycle
 - Customers can be served qualified software/data.
 - Providers can verify their qualified software/data.

- e-navigation SQA will support the two types of viewpoints by how to dealing with.
Conclusions

- SQA process will be designed in detail.
- Key activities will be developed for the SQA process.
- Practices will be developed for support the SQA process.
Thank you very much.