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Remote Sensing of Ocean Color
Glossary  The fraction of a collimated beam of photons in a particular , which is absorbedAbsorption, ( )a λ wavelength (λ)
or scattered per unit distance within the medium (units 1/length or m ). Photons which are absorbed by ocean water−1

alter the spectral distribution of light that can be observed remotely. -  Optical propertiesApparent optical properties (AOP)
which depend primarily on the medium itself but have a small dependence on the  field. Typically, AOPs areambient light
derived from measurements of the ambient light field, particularly upwelling and downwelling  and irradiance.radiance
Principal AOPs include irradiance reflectance, remote sensing reflectance, and the diffuse attenuation coefficients. - 

 Light of a particular wavelength ( ) that is scattered in a direction 90-180° away from its originalBackscattering,   ( )b b λ λ

path (i.e., backward hemisphere). Backscattered light is what is measured as ocean color in remote sensing, namely,
downward propagating sunlight that has been redirected back toward the sea surface and out into the atmosphere. For
natural waters, only a few percent of the light entering the ocean is backscattered out. - Colored or chromophoric

 CDOM is yellow-brown in color and absorbs primarily ultraviolet and blue lightdissolved organic material (CDOM)
decreasing exponentially with increasing wavelength. Produced from the decay of plant material, it consists mainly of
humic and fulvic acids and is operationally defined as substances that pass though a 0.2 μm filter. -  Light whichDiffraction
propagates or bends along the boundary of two different mediums with different indices of refraction. - Diffuse attenuation

 A normalized depth derivative that describes the rate of change of light, plane incident irradiance, withcoefficient, K( )λ
depth. Sunlight underwater typically decreases exponentially with depth. -  The speed of light inIndex of refraction (real), n
a medium,   , relative to the speed of light in a vacuum,   expressed as . The real c med c v  =   / n cv cmed index of refraction

determines the scattering of light at the boundary between two different mediums and within the medium from thermal
and molecular fluctuations. The relative refractive index, , is the ratio of the speed of light within the medium,   , to then′ c m
speed of light within a particle,   . As  deviates from 1, the scattering caused by the particle increases for a generalc p n′

size and shape particle (e.g., minerals and bubbles). -  Optical properties which dependInherent optical properties (IOP)
on the medium itself and are independent of the ambient light field. IOPs are defined from a parallel beam of light incident
on a thin layer of the medium. Two fundamental IOPs are the absorption ( ) and the volume scattering coefficient ( ),a β
which describe how light is either absorbed or directionally scattered by ocean water. - Irradiance (downward planar),  E d

 The incremental amount of  per unit time (W) incident on the sensor area (m ) from all solid angles( )λ radiant energy −2

contained in the upper hemisphere, expressed per unit  (λ, nm ). This is used to measure the amountwavelength of light −1

of spectral energy from the sun reaching the sea surface. -  The ratio of the upwellingIrradiance reflectance, R( )λ
irradiance,   ( ), to the plane downwelling irradiance,   ( ), in different wavelengths (λ). -  A measureE u λ E d λ Optical depth, ζ

of how opaque a medium is to radiation. The optical depth is a function of the geometric depth and the vertical attenuation
coefficient. -  An aquatic  the  off the bottom contributes to Optically shallow waters system where spectral reflectance

 measured above the sea surface and is defined by the water , bottom depth, and bottom composition. - radiance clarity
 The integrated photon flux (photons per second per square meter) within thePhotosynthetically available radiation (PAR)

400-700 nm wavelength range at the ocean surface. PAR is the total energy available to phytoplankton for photosynthesis
and is reported in units of Q m  s , where Q is quanta, or in μE m  s , where E is Einsteins. -  The−2 −1 −2 −1 Radiance, ( )L λ
incremental amount of radiant energy per unit time (in Watts) incident on the sensor area (m ) in a  view (sr−2 solid angle −1

) per unit  of light (nm ). A satellite measures radiance. -  At the boundary of two differentwavelength ( )λ −1 Reflection
mediums with different indices of refraction, a certain amount of radiation is returned at an angle equal to the angle of

. -  The direction of light propagation changes, or is bent, at the boundary between two mediums withincidence Refraction
different indices of refraction. The refracted light bends toward the normal boundary when the index of refraction
increases from one medium to another and away from the normal boundary when the index of refraction decreases from
one medium to another. -  A specialized ratio used for remote sensing purposesRemote sensing reflectance, R ( )rs λ

formulated as the ratio of the spectral water-leaving radiance,   ( ), to the plane irradiance incident on the water,   (L w λ E d λ

). It represents the spectral distribution of sunlight penetrating the sea surface that is backscattered out again and
potentially measured remotely. Theoretically, it is proportional to spectral backscattering   ( ) and inversely proportionalb b λ

to absorption ( ) of the surface water column. -  The component of the radiance signala λ Water-leaving radiance,   ( )L w λ
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measured above the water consisting of photons that have penetrated the water column and been backscattered out
through the air-sea interface. It does not include photons reflected off the sea surface, also called sun glint.

Definition of the Subject, Relevance, Motivation

The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the
earth's climate. Phytoplankton , the microscopic organisms in the surface ocean, are responsible for half of the
photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix
carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their
associated  over the vast expanses of the ocean is extremely challenging from ships. However, asprimary productivity
phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts
in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean
color remote sensing ." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration
and ocean color remote sensing has been used to estimate the amount of chlorophyll , the primary light-absorbinga
pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of
chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global
estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important
feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly
influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been
developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and
even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color
measurements are increasingly being used for environmental monitoring of , critical coastal habitatsharmful algal blooms
(e.g., seagrasses, kelps),  processes, oil spills, and a variety of hazards in the coastal zone.eutrophication

Introduction

Remote sensing of ocean color allows for the estimation of phytoplankton biomass and  over the globalcarbon fixation
ocean. From these data, approximately half of the global carbon fixation is estimated to occur by ocean phytoplankton,
accounting for roughly 50 Gt C year  [ , ]. Phytoplankton are the base of the marine food web, responsible for−1 1 2
producing organic carbon from carbon dioxide. The premise behind ocean color remote sensing is to relate the intensity
and spectral distribution of  reflected out of the water ("ocean color") to the biological and biogeochemicalvisible light
processes that influence the optical properties of the water column ("bio-optical properties") [ ]. The distribution,3
abundance, and temporal variation in various biological, physical, and chemical processes can be observed synoptically
from local and regional to global spatial scales from sensors placed on satellites or aircraft. Ocean color remote sensing
provides the long-term, continuous time series of phytoplankton biomass and productivity data necessary for global
carbon cycle and climate research [ - ], but the uses of ocean color data are increasingly diverse from military to4 6
environmental monitoring applications [ ].7
Phytoplankton have a marked influence on the subsurface and emergent light field [ ]. The light harvesting systems of8
phytoplankton, including the chlorophyll  pigment which is ubiquitous among phytoplankton species, absorb light acrossa
the  and influence the color of the near-surface ocean [ ]. An increase in absorption, or reduction invisible spectrum 9
reflectance, in the blue relative to the green portion of the spectrum can be empirically related to chlorophyll a
concentration [ ]. In other words, as phytoplankton are added to the water column, more blue light is absorbed and the10
reflected color changes from blue to green. The advent of space-based ocean color sensors in 1978 with NASA's Coastal
Zone Color Scanner (CZCS) and the follow on Sea-viewing Wide Field of View Sensor (SeaWiFS) in 1997 greatly
enhanced the understanding of phytoplankton distribution and concentration in the ocean [ ]. Satellite ocean 11 color

 provides estimates of phytoplankton abundance across all ocean basins (Atlantic, Pacific, Indian, Arctic, andimagery
Southern Oceans) and quantifies the variability from seasonal to interannual timescales.
Over the last several decades, ocean color has expanded beyond chlorophyll and a whole field has emerged to study
how the nature of the upwelling light field changes as a function of the quantity and composition of a variety of
constituents in the near-surface ocean, including biogenic and nonbiogenic inorganic material, nonliving and living organic
material (i.e., phytoplankton, bacteria and viruses), dissolved substances, and benthic habitats. Ocean color research has
sought to define the fundamental relationship between the inherent optical properties of the ocean, or the absorption and
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scattering properties of the constituents, and water-leaving . With improved technology, including radiometersradiance
with better spectral resolution, calibration, and a high signal-to-noise ratio, and in situ optical instrumentation, which
provided a description of the optical properties of oceanic constituents, biogeochemical parameters are being estimated
with greater accuracy and precision. Ocean color remote sensing has moved beyond estimations of chlorophyll alone and
is now used to measure total suspended sediment, colored dissolved organic material, particulate inorganic carbon, and
phytoplankton functional groups, as well as critical habitats and hazards influencing pelagic and coastal waters.

Optical Properties of the Water Column

Scattering and absorption of photons, the basic unit of light energy, in the surface ocean determines the intensity and
spectral shape of the water-leaving light signal measured at an ocean color sensor. Photons that propagate into the
ocean interact with water molecules, dissolved and  and are either absorbed or scattered. Because mostparticulate matter
of the light is propagated downward into the water column, only a small amount of the signal is scattered back out of the
water column and measured remotely. The bulk optical properties of water are used to describe how the spectral and
directional distribution of photons is altered within the natural water body.

Inherent Optical Properties

The absorption and scattering properties of water molecules and the dissolved and particulate constituents within the
water are called inherent optical properties (IOPs) . IOPs do not depend on the  conditions, but are a functionambient light
of the medium alone. The two IOPs commonly used for remote sensing purposes include the  ( ) andabsorption a
scattering ( ) coefficients, which refer to the fraction of incident light, a single, narrow, collimated beam of photons, whichb
is absorbed or scattered per unit distance within the medium (units 1/length or m ). The scattering coefficient stems from−1

the volume scattering function ( ), which is the differential scattering cross section per unit volume per , and isβ solid angle
calculated as the integral over all directions (0-180°). The attenuation coefficient ( ) accounts for the reduction in lightc
intensity due to absorption and scattering processes combined.
Both absorption and scattering processes can change the color of the ocean as observed from a satellite. Oceanic
constituents that are primarily responsible for absorption of photons include water molecules, phytoplankton pigments,
particulate detritus, and  (CDOM) (Fig. 1). Pure water is increasinglycolored or chromophoric dissolved organic material
effective at absorbing light at wavelengths greater than 550 nm and absorbs minimally in the blue and green portion of
the . Conversely, CDOM, operationally defined as all of the colored material that passes through a 0.2 μmvisible spectrum
filter, absorbs maximally in the ultraviolet and blue portion of the spectrum, decreasing exponentially with wavelength at a
rate which is related to the composition, or degradation state, of the material. CDOM is generally comprised of humic and
fulvic acids and small colloidal material released through the degradation of plant tissue, whether in soils or in water [ , 12

]. Commonly, CDOM is modeled with an exponential function, but a hyperbolic model may be more accurate [ ].13 14
Nonliving particulate material, called detritus or tripton, absorbs in a manner similar to CDOM and the two components
are difficult to differentiate spectrally.
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Remote Sensing of Ocean Color. Figure 1  for different constituents in seawater including water molecules,Absorption spectrum
chromophoric dissolved organic matter and detritus, and phytoplankton contributions bio-optically modeled for chlorophyll at 0.1, 1

and 10 mg m  [ ]−3 16

Phytoplankton absorb light in a complex manner related to the composition and quantity of their ,photosynthetic pigments
molecules structured to absorb photons within the visible range of 400-700 nm, dubbed photosynthetically available

 or . There are three distinct classes of pigments, namely, , carotenoids, and biliproteins [ ].radiation PAR chlorophylls 101
All phytoplankton contain chlorophyll  and most contain chlorophylls  and/or . Chlorophylls , , and  have two stronga b c a b c
absorption bands in the red and blue portions of the spectrum. Chlorophyll  absorption is low in the green (450-650 nm)a
portion of the spectrum. The presence of chlorophylls  and  extend the range of light available for photosynthesisb c
further into both the short- and regions. Carotenoids, of which there are many types, have both light harvesting and
photoprotective functions. Finally, some phytoplankton contain red or blue pigments called biliproteins, which are divided
into classes based on the position of their absorption peaks. The phytoplankton  describes theabsorption coefficient
spectral absorption for natural waters comprised of mixtures of phytoplankton and has been commonly parameterized by
chlorophyll concentration and dominant cell size [ , ].15 16
Scattering processes, which include  and , occur at the boundary of a particle with arefraction, reflection diffraction
different  , the ratio of the speed of light in the surrounding medium to the speed of light within theindex of refraction
particle, than the surrounding medium. Scattering is predominantly elastic, the energy of the photon is conserved, but the
direction of propagation is altered. Rather than reducing light, scattering works to inhibit the straight-path vertical
penetration of light. The total scattering coefficient ( ) can be subdivided into light which scatters in the forward direction (b

  ) (0-90°) and the backward direction (   ) (90-180°) relative to the unattenuated beam. The backscattered light is the b f b b
 that is scattered out of the water column and measured by a sensor as "ocean color." The magnitude of   is aradiance b b

function of the concentration, composition (i.e., index of refraction), shape, and size of particles [ ].17
Water molecules, salts, organic and inorganic particles, and bubbles provide strong contributions to light scattering in the
ocean. Scattering by pure water is the result of density fluctuations from the random motion of water molecules and has a
wavelength dependence of   [ ]. The presence of salt increases scattering, where pure seawater, with a salinity ofλ −4 18
35-38‰, scatters 30% more light than pure water devoid of salt. When particles are present, as in natural waters,
scattering increases markedly [ ]. The scattering coefficient for the clearest surface waters is an order of magnitude19
greater than that of pure seawater. Particles that are large relative to the  scatter mainly in the forwardwavelength of light
direction via diffraction, where photons propagating along the particle boundary change their direction in response to the
boundary in a manner proportional to the cross-sectional area of the particle. Photons entering large particles are likely
absorbed. Conversely, small particles mainly reflect and  light in a manner proportional to the volume of therefract
particle. Small particles with an index of refraction that deviates markedly from 1, including  (10  m)-sized calciummicron −6
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carbonate plates or coccoliths generated by coccolithophorid phytoplankton (  = 1.25) or bubbles (  = 0.75), are highlyn′ n′
efficient at scattering light in the backward direction [ ].17
The processes of absorption and scattering are considered additive, therefore the sum of the contribution of each
constituent determines the magnitude of the total coefficients   and   . As such, IOPs are separated into operationallya t b t
defined components which comprise  and   :a b b

where the subscripts correspond to water ( ), algal or phytoplanktonic ( ), non-algal or detrital ( ) matter, and w ph d dissolved
, originally termed "gelbstoff" ( ). Dissolved material does not scatter light and the contributions of both algal andmaterial g

non-algal matter are generally consolidated into backscattering from particulate ( ) material. Recent advances in opticalp
instrumentation have allowed for the measurement of absorption and scattering properties in situ and contributed to
advances in ocean color remote sensing [ ].20

Apparent Optical Properties

Measurements of how light of different wavelengths attenuates with depth in the water column have been the historical
basis of optical oceanography [ ] following from the use of white Secchi disks to estimate water . The properties21 clarity
that can be derived from measurements of  in the water column are generally termed "apparent" opticalambient light
properties (AOP) because they operate as optical properties describing the fundamental properties of the medium with
only a slight dependence on the angular distribution of the light field. Spectral , , is the fundamental radiometricradiance L
quantity which describes the spatial, temporal, directional, and wavelength-dependent structure of the light field in units of
radiant flux per area per wavelength per  (W m  nm  sr ) [ ]. Planar downwelling irradiance,   , is asolid angle −2 −1 −1 18 E d
measure of the  flux incident on the surface from all directions or solid angles contained in the upperradiant energy
hemisphere, with units of radiant flux per unit area per unit wavelength (W m  nm ). The same concept, applied to the−2 −1

lower hemisphere, describes upwelling irradiance,   . The ratio of the upwelling to downwelling irradiance yields E u
 , , a measure of how much light of a certain wavelength entering the ocean is scattered backwardirradiance reflectance R

by ocean molecules and particles.
For remote sensing purposes, only the radiance from a specific direction is measured by a sensor, not the entire
upwelling irradiance. Hence, the color is parameterized as   (   , sr ), which is the ratio ofremote sensing reflectance R rs

−1

water-leaving radiance to downwelling irradiance. The term "water-leaving radiance " represents the radiance signal
emerging from the water column in a  direction and specifically excludes those upward-directed photons that havenadir
only reflected off the sea surface and not penetrated the water column (i.e., sun glint). The term   represents theR rs
proportion of the downwelling light incident on the water surface that is returned through the air-water interface in the
nadir direction due to differential absorption and scattering processes. The parameter   is proportional toR rs
backscattering coefficient and inversely proportional to  and can be approximated as:absorption coefficient

where the ratio  is related to the bidirectionality of the light field and varies from 0.09 to 0.11 for most remote sensingf/Q
applications [ ].22
The rate of change of radiance and irradiance with depth, known as the vertical diffuse attenuation coefficient ( ; m ), isK −1

another principle AOP. Irradiance and radiance decrease approximately exponentially with depth. The downward diffuse
attenuation coefficient,   , the rate of decrease in downwelling irradiance,   (0), with depth ( ),K d E d z

is commonly used in biological studies and is closely linked to the absorption coefficient of the medium specifically. The
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optical depth, ζ, corresponding to any given physical depth is defined below:

Optical depths frequently used by biologists include 2.3 and 4.6, corresponding to the 10% and 1% light levels,
respectively. Also, the portion of the surface water column contributing 90% of the water-leaving radiance has a depth, ,z
described by  [ ]. The  equation is the mathematical formulation that defines the relationship = 1 / z Kd 12 radiative transfer

between the apparent and inherent optical properties of natural water bodies [ ] and is the basis for the semi-analytical18
models used in ocean remote sensing.

Basics of Ocean Color Remote Sensing

Many challenges are inherent to remote sensing of ocean color. In comparison to land, the ocean target is dark, with an
albedo of only a few percent. This means that most of the light that enters the water is propagated downward into the
water column and only a few percent is scattered back out again. This is quite different from land and ice surfaces which
have a much higher albedo. Most ocean color sensors are passive in that they measure only the radiation that originates
from the sun, as opposed to active sensors that produce and sense their own stream of light (e.g., Light Detection and

 or LIDAR ). Viewed from space, moreover, the ocean is observed through a thick atmosphere which reflectsRanging
sunlight back to the sensor and is significantly brighter in the visible wavelengths than the water itself. In technical terms,
this is quantified as a low signal-to-noise ratio where the "signal" is the light reflected from within the ocean and the
"noise" is light reflected from the atmosphere and sea surface. This section outlines the platforms, calibration,
atmospheric correction, and levels of data processing critical for successful ocean color remote sensing.

Sensors and Platforms

Ocean color sensors can be mounted on space-based satellites or on suborbital platforms like aircraft or unmanned aerial
vehicles. The spatial and temporal sampling and the questions that can be addressed with the data depend on the type of
platform employed. Most current ocean color sensors have a wide field of view, which translates to a wide sampling
swath, and are mounted on sun synchronous polar-orbiting satellites (e.g., CZCS, SeaWiFS, MODIS Aqua and Terra).
These sensors have the potential to provide global coverage of the earth roughly every 3 days at the equator and more
frequently at the poles. However, clouds obscure the ability of the sensor to view the ocean color and, in reality, temporal
sampling for any given region is much less. Data are frequently averaged over longer time periods to produce weekly,
monthly, and seasonal composite images of the global ocean (Fig. 2). The spatial resolution is also limited nominally to 1
km pixel widths (and down to 250 m for select channels) in these polar-orbiting sensors in part because of limitations in
signal-to-noise inherent to the dark ocean surfaces (see atmosphere correction below). Global datasets are often
aggregated to 4-km or 9-km pixels. However, higher spatial resolution on the scale of meters can be obtained from some
space-based platforms and from ocean color sensors placed on aircraft (Fig. 3).
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Remote Sensing of Ocean Color. Figure 2 Global maps of satellite-derived chlorophyll showing increasing levels of temporal
 from daily to seasonal. Imagery from MODIS Aqua satellite from 2006: ( ) 17 December; ( ) 11-17 December; ( ) 1-31resolution a b c

December; ( ) Autumn. White spacing in imagery represents gaps in orbital coverage (daily image), as well as clouds and ice cover.d
Merging of imagery from different sensors can provide enhanced daily coverage [ ]100
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Remote Sensing of Ocean Color. Figure 3 Ocean color remote sensing imagery of Monterey Bay, California, illustrates different
spatial resolutions available: ( ) AVIRIS sensor flown on an aircraft, 10 m pixels [ ]; ( ) SeaWiFS satellite Level 2 data, 1 km pixels; (a 25 b

) SeaWiFS satellite gridded to 4-km pixels; ( ) SeaWiFS satellite Level 3 9-km standard productc d

The current suite of ocean color sensors has nominally six to seven spectral bands spanning the visible wavelengths
(400-700 nm). These bands are not spread uniformly across the , but have been selected to correspondvisible spectrum
to reflectance characteristics of open ocean waters, particularly those related to phytoplankton pigment absorption
features . Three bands are generally found in the "blue" (near 410, 440, and 490 nm), one to two bands in the "green"
(510 or 530, 560 nm), and one to two channels in the "red" (670, 680 nm). In addition, channels are also incorporated in
the  to short-wave infrared (SWIR) for purposes of atmospheric correction (see section "Atmosphericnear infrared (NIR)
Correction"). Most of the visible channels were selected to match absorption features of phytoplankton and other
constituents. Additional channels are also needed to bridge the large 100 nm gap between 560 and 670 nm, where
absorption features are dominated by water, to better constrain backscattering in complex coastal waters [ , ]. New23 24
technology has allowed for the development of sensors that span the full range of visible and near infrared (NIR)
spectrum or "hyperpsectral," also referred to as imaging spectrometers.
No single platform is ideal for addressing all of the temporal and spatial variability in the oceans. A constellation of ocean
color imagers with complementary capabilities and specifications is ultimately required to adequately address the diverse
requirements of the coastal research and applied user communities. For example, the Hyperspectral Imager for the
Coastal Ocean (HICO) was recently installed on the  for the study of the coastal ocean andInternational Space Station
adjacent lands. This imaging spectrometer is intended to provide hyperspectral imagery at 100-m resolution sampling at
different angles and times of the day for selected regions. Sensors are also being considered for placement on
geostationary satellites, similar to the international constellation of meteorological satellites. Such sensors would look at
the same regional location on earth for extended periods of time and be able to provide better temporal resolution of
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ocean processes and episodic hazards. Regional efforts such as the Geostationary Ocean Color Imager (GOCI) on the
COMS-1 platform from South Korea are already planned for launch. In addition, higher spatial and spectral resolution
polar orbiting sensors are proposed to address questions related to seasonal variability in global coastal habitats and
polar ice cover.
Portable sensors flown on aircraft or unmanned aerial vehicles (UAV's) provide a critical sampling niche distinct from
satellite-borne sensors that is particularly well suited for coastal applications and ice research (Fig. 3a) [ ]. Airborne25
sensors can sample at finer spatial scales (meters), can operate under clouds and with nearly unlimited repeat coverage,
and are effective platforms for high-resolution active sensors (e.g., LIDAR). Flight lines and scanning geometries can also
be oriented to avoid sun glint and their range can be greatly expanded by launching from ships. The technology required
to build portable sensors for coastal applications is developing with wide field of views, minimum polarization
dependence, high response uniformity, and optimized signal-to-noise ratio for low-light channels [ , ]. These sensors26 27
are becoming more popular for use in the environmental management of coral reefs, seagrasses, kelps, and other coastal
targets, and have the potential to monitor episodic events such as  and runoff and flooding fromharmful algal blooms
storms.
Ocean color sensors in space have traditionally been "whisk broom" in design where a single detector collects data one
pixel at a time as the telescope rotates to build up pixels along a scan line. Some satellites and most of the suborbital
sensors are "pushbroom" where the entire scan line is imaged synoptically by a line of sensors arranged perpendicularly
to the flight direction. In order to achieve high-quality data that can track climatological trends in ocean color, sensors are
required to have very high radiometric accuracy and stability. Detectors are calibrated pre- and post-launch and
degradation over time is carefully quantified with vicarious calibrations from field measurements and ideally lunar imaging.
Periodic reprocessing of the satellite data is considered critical to obtaining high-quality datasets and continuity over
multiple missions [ , ].5 28

Atmospheric Correction

One of the most challenging aspects of ocean color remote sensing is successfully removing the atmospheric signal from
the water column signal. Aerosols and gas molecules are the primary contributors to the  measured at the top ofradiance
the atmosphere. Approximately 80-85% of the radiance measured at the sensor is the result of  byRayleigh scattering
molecules in the atmosphere that are small relative to the . Photons reaching the sensor (   ) are awavelength of light L u
combination of those scattered by the atmosphere (   ), reflected at the air-water interface (   ), known as L p L r specular

, or have been backscattered from within the water column, dubbed water leaving radiance, or   (Fig. 4). Thereflection L w
water-leaving radiance, used for most ocean color applications, is only a small portion of the signal retrieved at a satellite
and must be differentiated from the photons scattered within the atmosphere and specularly from the sea surface in a
process called "atmospheric correction."
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Remote Sensing of Ocean Color. Figure 4 Radiance measured by a satellite includes light scattered by the atmosphere and reflected
off the sea surface (i.e., glint). In a process called "atmospheric correction," these signals are removed leaving the "water-leaving
radiance" or the light that has penetrated the water column and been backscattered out to the satellite - a measure of ocean color

Rayleigh scattering , which decreases with  following  , can be estimated using a single-scattering wavelength ( )λ λ −4

 equation using the atmospheric pressure and appropriate  [ ]. An additional 0-10% ofradiative transfer viewing geometry 29
the radiance signal is due to aerosols (i.e., , dust, and pollution), particles with sizes comparable to the wavelength ofhaze
light which absorb and scatter as a complex function of their type, size, and concentration. The type and concentrations of
aerosols overlying the ocean are quite variable in space and time, particularly in coastal regions subject to urban pollution
and terrestrial dust [ ].30
Atmospheric correction of aerosols remains a challenge for accurately deriving water-leaving radiance from satellites and
aircraft. Approaches generally focus on channels in the NIR and even in the short wave infrared (SWIR) [ , , ].29 31 32
Because water absorbs so heavily in the infrared, very few photons are reflected out of water in this part of the 

 and the signal is dominated by reflection from atmospheric gases and aerosols. Various typeselectromagnetic spectrum
of models are used, including coupled models and multi-scattering models, to infer the contribution of aerosol reflectance
in the visible portion of the spectrum from the infrared. Aerosol reflectance is not spectrally flat, but varies with
wavelength, and at least two channels are necessary to determine the spectral shape of aerosol reflectance and
extrapolate from the NIR to visible wavelengths [ , ].29 33
Dust, particularly from desert storms, can also impact the optical properties of the atmosphere and most atmospheric
correction algorithms for ocean color sensors are not capable of handling absorbing mineral dust (i.e., colored dust) [ ].34
For example, airborne plumes of Saharan dust are observable all year on satellite images over the Tropical Atlantic and
may be increasing in areas like the Mediterranean Sea [ ]. If colored dusts are not properly corrected for in the35
atmospheric correction schemes, then the color of the ocean is not accurately estimated resulting in errors in chlorophyll
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and other biogeochemical properties retrieved from the satellite data [ ]. In addition to its radiative impact, it has been36
suggested that this mineral dust has a substantial influence on the  and may also carry pollutants tomarine productivity
the oceans [ , ].37 38
Whitecaps breaking on the sea surface must also be corrected from derivations of water-leaving . Whitecapradiance
reflectance is often modeled using an empirical cubic relationship to wind speed and an approximate reflectance value for
an individual whitecap [ ], but such models often overcorrected the imagery, and a fixed whitecap correction is applied39
when wind speeds exceed a threshold (e.g., 8 m s  for SeaWiFS). At high winds, some of the signal attributable to−1

whitecaps is removed by the aerosol corrections.

Levels of Processing

Standards for ocean color data processing, developed at US   forNational Aeronautics and Space Administration (NASA)
the SeaWiFS mission [ ], are widely followed by the international community of ocean color users and involve four levels40
of processing (Table 1).

Remote Sensing of Ocean Color. Table 1 Levels of data processing products from ocean color satellites

Level Processing Spatial qualities

0 Raw data as measured directly from the spacecraft
Satellite coordinates at highest
spatial resolution

1 Converted to radiance using calibrations and sensor characterization information
Satellite coordinates at highest
spatial resolution

2 Atmospherically corrected to water-leaving radiance and derived products
Satellite coordinates at highest
spatial resolution

3
Derived products have been mapped onto a two-dimensional grid at known spatial
resolution and can be averaged over timescales (weekly, monthly)

Regular  at lower spatialgridded data
resolution (e.g., 4 or 9 km)

4
Products that have been merged or assimilated with data from other sensors, in situ
observations, or model outputs

Regular gridded data at lower spatial
resolution

Ocean Color Algorithms

This section presents the classification of the global ocean into two optical classes: Case 1 and Case 2. The general
approaches for two of the main products from ocean , chlorophyll and , for Case 1color imagery primary productivity
waters and a description of the semi-analytical algorithms used for both Case 1 and Case 2 waters are presented.

Optical Classification of Aquatic Systems

Ocean waters have long been classified based on their color properties [ ]. A classification system introduced in 197741
differentiates phytoplankton-dominated waters from those where inorganic particles are dominant, known as Case 1 and
Case 2, respectively [ ]. These cases have evolved from their original forms into the categories used today: Case 142
waters are those waters where optical properties are determined primarily by phytoplankton and related colored dissolved
organic matter (CDOM) and detritus degradation products; Case 2 waters are waters where optical properties are
significantly influenced by other constituents such as mineral particles, CDOM, or microbubbles that do not covary with
the phytoplankton concentration [ , ]. In today's world, approximately 97% of the surface ocean falls toward the8 43
optically simple, deep water, Case 1 classification. When inorganic, organic, particulate, and  all varydissolved material
independently of one another, such as in coastal ecosystems with considerable riverine influence, bottom resuspension,
or optically shallow regions, the system falls toward the Case 2 classification, also called "optically complex."
This binary classification scheme has been prevalent in bio-optical modeling of ocean waters and development of ocean
color algorithms. However, many problems exist with use of such simplified schemes in modeling natural systems. For
example, there is no sharp dividing line between the cases and each investigation tends to use as different criteria for
defining Case 1 and Case 2. Commonly the two cases are defined by the relationship between chlorophyll and remote
sensing reflectance or scattering. Even in the global ocean considered to be Case 1, CDOM concentrations do not covary
with the instantaneous chlorophyll concentration [ ], but can vary from 30% to 60% of the total non-water light44
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absorption [ ] and result from differences in water mass ventilation, water column oxidative remineralization, and45
photobleaching [ ].46
In , in addition to the water column and its constituents (i.e., dissolved and particulate material),optically shallow waters
the bottom contributes to the water leaving  in a way that depends on the bottom composition and roughness.radiance
Periodic measurements of bottom types using passive remote sensing in coastal systems are valuable for describing and
monitoring habitats [ ]. The magnitude and spectral quality of light reflected off of the bottom material can allow47
separation of bottom reflectance from the water column signal, where different bottom types will have a different effect on
reflectance. Shallow, clear water will yield the most information about bottom material, more readily allowing spectral
discrimination of bottom type. However, as depth and the diffuse attenuation coefficient,   , increase, the bottom signalK d
becomes difficult to differentiate.

Empirical Chlorophyll Algorithms

Standard calculation of chlorophyll from ocean  involves an empirical relationship developed from fieldcolor imagery
observations collected throughout the global ocean [ ]. Algorithms are typically not developed from the remotely sensing10
imagery itself, because this would incorporate any biases in calibration and atmospheric correction procedures used to
derive reflectance, as well as any spatial inhomogeneity in parameters over pixel scales, and would require new
algorithms for every new calibration, reprocessing, and sensor. Empirical solutions are used because an analytical
solution to the problem requires an assessment of the entire radiance distribution and depth derivative and such
measurements are not possible with remote sensing [ ]. Only the upward flux incident upon the water-air interface at48
angles less than 48°, the angle at which complete internal reflection occurs, is measurable from above the sea surface [ ]6
and generally only the flux emitted in a single  is remotely sensed.viewing angle
The current empirical algorithms use the shift in ocean color from "blue" at low Chl, where   peaks at 400 nm, toR rs
"green" at high chlorophyll, where   peaks at 555 nm (Fig. 5a). Empirical ocean color algorithms have been applied toR rs
the vast majority of the global ocean considered Case 1 and use multiple ocean color bands typically log-transformed and
in a ratio formulation to minimize problems with atmospheric correction and differential scattering in the ocean. The
coefficients for the algorithms are regularly adjusted to account for different sets of wavebands in various sensors and as
new  becomes available (Table 2). The OC3M algorithm developed for MODIS, for example, uses a 4th orderfield data
polynomial derived from a large global dataset of field measurements of chlorophyll and   . It uses a logarithmic ratio ofR rs
blue light (either 443 and 488 nm depending on which is greater) to green light (555 nm) and follows an inverse
relationship such that low Chl is retrieved or high ratios when the ocean color is blue and high Chl when more green light
is reflected (Fig. 5b). These types of algorithms tend to work best at lower Chl (<1 mg m ), found in most of the world−3

ocean, where the algorithm has a flatter slope [ ].49

Remote Sensing of Ocean Color. Figure 5 ( ) Remote sensing reflectance (   ) spectra modeled for different concentrations ofa R rs

chlorophyll  (Chl) from 0.01 to 50 mg m . The color of each line represents the modeled ocean color a human might observea −3

following [ ]. ( ) The empirical OC3M model for deriving Chl from   for the MODIS Aqua sensor. The model uses the "blue"61 b R rs
channel with the highest   value (443 or 488 nm) divided by the "green" channel at 551 nm. Each  represents the modeledR rs square

Chl for the corresponding   spectra in panel A and demonstrates how the model becomes less accurate at high ChlR rs
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Remote Sensing of Ocean Color. Table 2 Empirical chlorophyll algorithms for a variety of ocean color sensors

Namea Sensor
Channelsb Coefficientsc

Blue Green a0c a1 a2 a3 a4

OC4 SeaWiFS 443 > 490 > 510 555 0.366 −3.067 1.93 0.649 −1.532

OC3S SeaWiFS 443 > 490 555 0.2409 −2.4768 1.5296 0.1061 −1.1077

OC2S SeaWiFS 490 555 0.2372 −2.4541 1.7114 −0.3399 −2.788

OC3M MODIS 443 > 488 551 0.283 −2.753 1.457 0.659 −1.403

OC2M HMODIS 469 555 0.1543 −1.9764 1.0704 −0.2327 −1.1404

OC4O OCTS 443 > 490 > 520 565 0.4006 −3.1247 3.1041 −1.4179 −0.3654

OC3O OCTS 443 > 490 565 0.2836 −2.1982 1.0541 0.186 −0.717

OC2O OCTS 490 565 0.2805 −2.167 1.1789 −0.1597 −1.5591

OC3C CZCS 443 > 520 550 0.3012 −4.4988 9.0983 −9.9821 3.235

aName of ocean color (OC) algorithm incorporates the number of wavebands (2-4) used in the formulation and the initial
for the sensor used (S = SeaWiFS; M = MODIS; O = OCTS; C = CZCS)

bThe algorithms use a log-transformed ratio of "Blue" (443-520 nm) to "Green" (550-565 nm) remote sensing reflectance (
 ). When more than one "Blue" channel is provided, only the channel with the highest   is used. x = log10(  R rs R rs R rs

(Blue)/   (Green))R rs
cChlorophyll  is modeled as a fourth polynomial fit to the field data such that: a Chl = 10 ( 0 +  1 x +  2 x  +  3 x  + ∧ a a  *  a  *  2 a  *  3 a

4 x ) *  4

For much of the open ocean where chlorophyll concentrations are low, the empirical algorithms work well and relative
error is estimated to under 35% [ ]. However, empirical derivations of chlorophyll in Case 1 waters can be in error by a50
factor of 5 or more, particularly at higher Chl [ ]. Such variability is due to differences in absorption and backscattering49
properties of phytoplankton and related concentrations of colored dissolved organic matter (CDOM) and minerals. The
empirical algorithms have built-in assumptions that follow the basic precept of biological oceanography; i.e., oligotrophic
regions with low phytoplankton biomass are populated with small phytoplankton while more productive regions contain
larger bloom-forming phytoplankton . With a changing world ocean, phytoplankton composition may shift in response to
altered environmental forcing and CDOM and mineral concentrations may become uncoupled from phytoplankton stocks
creating further uncertainty and error in the empirical approaches [ ].49
The empirical approach is not widely applicable in Case 2 waters, generally found near the coasts. Such waters are
influenced by freshwater plumes with CDOM and minerals that significantly impact the optical properties, as well as
resuspension of bottom sediments [ ]. Phytoplankton assemblages can also be diverse in coastal regimes and light51
absorption per unit of Chl is difficult to constrain. Melting and runoff of glacial sources can increase particle concentrations
in the nearshore and change phytoplankton assemblages. In order to use remote sensing in coastal waters,
semi-analytical models are employed that are able to decompose the reflected color into the many absorbing and
scattering constituents in the water column (see section "Semi-analytical Algorithms").

Primary Productivity Algorithms

Net primary production is a key parameter derived from ocean color data that provides a measure of how much carbon
dioxide is taken up and incorporated into ocean phytoplankton during photosynthesis. Export of fixed carbon to the ocean
interior, while only a fraction of the total biomass produced, provides a long-term sink for atmospheric carbon dioxide [ ].52
While satellite-derived Chl is not a direct measure of  in phytoplankton, such estimates are typically derivedcarbon fixation
from correlates of Chl and rates of carbon fixation [ ].  varies with phytoplankton species53 Net primary productivity
assemblages and their physiological state related to light, temperature, nutrients, and other environmental factors.
A variety of formulations have been developed for ocean color remote sensing and parameterized for the global ocean or
specific regions. Models are generally restricted to parameters that can also be globally derived from remote sensing
imagery, such as  and photosynthetically available radiation . Moving from a sea surface temperature (PAR) standing stock
of phytoplankton biomass to photosynthetic rate requires a time-dependent variable. Solar radiation in the form of PAR is
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commonly used in formulations to convert biomass to . The physiological response of the measuredprimary productivity
chlorophyll to light, nutrients, temperature, and other environmental variables must also be incorporated in the model.
Primary productivity models can be differentiated by the degree of explicit resolution in depth and irradiance [ ].53
Round robin experiments have been conducted to compare the performance of models for assessing global productivity
from ocean , as well as the output from ecosystem-based general circulation models [ , ]. The third suchcolor imagery 1 54
effort found that global average primary productivity varied by a factor of two between models and the global mean
productivity for the different model groups ranged from 44 to 57 Gt C year  with an average of 50.7 Gt C year . The−1 −1

models diverged the most in the high-nutrient low chlorophyll waters of the Southern Ocean. Primary productivity
algorithms have also been formulated from remote sensing estimates of the inherent optical properties (such as light
absorption and backscattering) directly [ , ], without incorporating Chl and the associated uncertainties inherent in that55 56
parameter.

Semi-analytical Algorithms

The empirical algorithms used for deriving chlorophyll have been likened to a "black box" that provides no mechanistic
understanding of ocean optics and are particularly challenging to apply in a changing ocean, when the water properties
are different from the empirical data used to develop the formulation [ ]. Analytical solutions to deriving IOPs from57
water-leaving  are not possible because the radiance can only be measured from a few angles. Semi-analyticalradiance
algorithms (or "quasi-analytical") are based on a fundamental understanding of the propagation of light in the ocean and
provide a more mechanistic approach to ocean color. These algorithms incorporate some empirical approximations, but
do not rely on fixed predetermined relationships between the absorption and backscattering components of the water
column.
In semi-analytic models, the ocean color signal is inverted to obtain estimates of the various absorbing and backscattering
constituents directly. Parameterization of how water, phytoplankton, and dissolved and detrital material inherently absorb
and backscatter light across the  (i.e., their spectral shape) is used in these models. The visible spectrum spectral

 measured at the satellite is often inverted to retrieve the amounts of each individual component contributing toreflectance
the absorption and backscattering of light. Such algorithms are the primary methods for obtaining CDOM distributions
across the ocean surface [ ]. In semi-analytical models, the biogeochemical parameters, such as Chl and total58
suspended matter, are derived secondarily from the IOPs. Semi-analytical formulations vary in terms of their architecture
and statistical methods employed to retrieve the inherent optical properties from the remote sensing signal and the
empirical parameterizations within the models [ ].57

Applications for Oceanography

Ocean color remote sensing is an important tool for many branches of oceanography, including biological, physical, and
chemical oceanography. The section below summarizes only some of the main applications of ocean color remote
sensing with the understanding that the uses of ocean color are continuously expanding. A recent monograph from the
International Ocean Color Coordinating Group (IOCCG) entitled "Why Ocean Colour?: The Societal Benefits of
Ocean-Colour Technology" extensively documents the many uses of ocean color remote sensing from scientists to
environmental managers to the general public [ ]. Web-based software has also been developed, see, e.g., Giovanni [7 59
], which allows the public to freely map and analyze ocean  over time and space. Figure 6 provides ancolor imagery
example of various types of figures that can be easily generated from remotely sensed chlorophyll using that software.
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Remote Sensing of Ocean Color. Figure 6 Various times series analyses that can be conducted with standard Level 3 chlorophyll
imagery including ( ) Temporally averaged spatial distributions; ( ) time series of interannual variability; ( ) histograms showing thea b c
statistical distributions; ( ) Hovmoller plots presenting both spatial (x-axis) and temporal (y-axis) variability. Such plots can be easilyd

generated by the public with the Giovanni interface [ ]59

Biological Oceanography

Apart from estimating chlorophyll and , ocean color remote sensing has many biological applicationsprimary productivity
that range from phytoplankton physiology to assessing distributions of migrating whales. Phytoplankton physiology,
particularly the efficiency of light capture and utilization, has been modeled from the natural fluorescence signature
provided by ocean color remote sensing [ ]. Even though the spectral resolution available in most current ocean color60
satellite is limited to six to eight available spectral channels [ ], a variety of phytoplankton taxa and groups have also61
been distinguished from satellite imagery based on their unique optical properties and/or regional tuning of algorithms
using knowledge of the local phytoplankton composition. Phytoplankton taxa can have unique sets of accessory pigments
that differentiate them from one another and can result in unique absorbance spectra. In addition, phytoplankton can have
cell walls or exterior plates comprised of different materials (e.g., silica, calcium carbonate) that can make them more or
less reflective. Various approaches have been developed to map size classes (from  to microplankton) or majorpico-
groups of phytoplankton in the global ocean [ ]. Other algorithms have targeted particular phytoplankton taxa such as 62

, nitrogen-fixing  [ ], toxic dinoflagellates [ ], and nuisance cyanobacteria [ ].coccolithophores Trichodesmium 63 64 65
Satellite-derived chlorophyll and primary productivity provide a key metric to assess marine ecosystems temporally on a
global scale and have been used extensively to monitor conditions that impact other biological organisms in the sea. The
relationship between satellite-derived chlorophyll data and organisms at higher trophic levels depends upon the number
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of linkages in the food web. For species like anchovies and sardines, which eat phytoplankton in their life cycle, the
linkage can be direct [ ]; whereas, many trophic levels can exist for other species and the relationship can be quite66
nonlinear [ ]. The distribution, movement, and migration of whales, , pinnipeds, penguins, and sea turtles has7 dolphins
been related, either directly or indirectly, to remotely sensed patterns of Chl (reviewed in [ ]). Most fish have planktonic7
larval stages that are strongly influenced by ocean circulation and recruitment success has been found to be related to
the degree of timing between spawning and the seasonal phytoplankton bloom, as observed from satellites [ ]. Ocean67
color remote sensing has also been used to study invertebrates in the global ocean, such as shrimp in the
Newfoundland-Labrador Shelf [ ] and pteropods and pelagic mollusks in the Ross Sea [ ]. Mean 68 69 net primary

, determined from ocean color satellite imagery, elucidates  in biogeographical studies ofproductivity species richness
cephalopods [ ].70
New techniques have also been developed to use ocean color remote sensing in optically shallow water systems to
deduce changes in benthic habitats [ ]. Optically shallow water occurs when the seafloor contributes to the reflectance71
signal observed remotely by a satellite (Fig. 7a) and is defined by a combination of water , water depth, and bottomclarity
composition. Satellite estimates of biomass and net productivity of seagrasses, kelps, and other benthic producers have
been conducted over regional scales [ , ] (Fig. 7b). Ocean  from aircraft can map fine-scale distributions47 72 color imagery
of seagrasses, coral reefs, and other coastal habitats at local scales [ , ]. Changes in ocean color signals over time73 74
can also be used to assess contributions of coastal carbon to the global carbon cycle [ , ]. Responses of coastal75 76
regions linked to terrestrial changes can also be observed with ocean color imagery. Warming of the Eurasian landmass,
for example, has led to enhanced productivity in the water column [ ]. Agricultural runoff from fields in Mexico was77
shown to stimulate large phytoplankton blooms in the Gulf of California that alter water clarity and potentially lead to
anoxic conditions [ ].78

Remote Sensing of Ocean Color. Figure 7 The Great Bahama Bank is an example of optically shallow water where the seafloor color
can be observed from space. ( ) Pseudo-true color image from MODIS Aqua showing the bright  Banks with Florida, USA,a Bahamas
to the West and Cuba to the Southwest. White wispy clouds can obscure the ocean color. ( ) Net  (mgC m  d )b primary productivity −2 −1

of seagrass and benthic algae estimated from ocean color imagery over the Great Bahama Bank [ ]47

Ocean Physics

Ocean color data is well suited to the detection of convergence zones and oceanic fronts, sometimes better than thermal
sensors which penetrate only the skin layer, or the first 10 μm, of the water column. Interestingly, a sequence of
ocean-color-derived chlorophyll images may help predict the formation of  days before they appear. The increasededdies
penetration of visible radiation reveals more frontal features and with greater detail than those retrieved with sea surface

 data alone [ ]. Likewise, upwelling regions, which bring cold, nutrient-rich waters up to the surface can betemperature 79
readily identified in ocean color images as areas with an enhanced chlorophyll concentration. The intensity of upwelling
from year-to-year can be tracked through the time series of chlorophyll abundance. Chlorophyll is an effective indicator for
detecting anomalous activity in the oceanic environment. Evidence of an El Niño event beginning in November of 1997,
during which phytoplankton pigment concentrations appeared anomalously low in the Equatorial Upwelling Zone, was
obvious in the continuous coverage supplied by SeaWiFS. The onset of restored upwelling was likewise evident with the
increased chlorophyll concentrations during the months of June and July 1998 [ ].80
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Ocean water clarity also affects the distribution of shortwave heating in the water column. Both chlorophyll and CDOM
concentrations have been linked to changes in heating of surface waters [ , ]. Increased clarity would be expected to81 82
cool the surface and heat subsurface depths as shortwave radiation penetrates deeper into the water column. Recent
studies show that water , as determined from ocean color remote sensing , is an important feature in atmosphericclarity
circulation (the  ), oceanic circulation (  ), and formation of mode water [ ]. Importantly,Hadley cells Walker Circulation 83
ocean  is also critical to predicting tropical cyclone activity. The presence of light-absorbing constituents (likecolor imagery
Chl and CDOM) shapes the path of Pacific tropical cyclones and propagation to higher latitudes [ ].84

Chemical Oceanography

A major contributor to the ocean carbon system is colored dissolved organic material (CDOM), a mixture of compounds
produced primarily by decomposition of plant matter. CDOM, when present in high enough concentrations, produces a
yellow or brownish color and is highly reactive in the presence of sunlight. When CDOM undergoes ,photodegradation
organic compounds essential to phytoplankton and bacterial growth are released [ ]. Satellite measurements collected85
using SeaWiFS, MODIS, and MERIS produce daily estimates of CDOM at 1 km resolution. High temporal resolution
CDOM maps can be used to identify and track water masses at timescales close to the processes determining its
distribution. CDOM dynamics play an important role in ocean , regulating the absorption of blue and biogeochemistry UV

 in the surface ocean and therefore altering the depth of the euphotic zone [ ] and heating surface waters [ ].radiation 58 82
Although CDOM is difficult to analyze chemically, its distribution and abundance, identifiable using ocean color remote
sensing, is highly relevant to understanding carbon cycling in the ocean.
The particulate inorganic carbon  pool, calcium carbonate (CaCO ), contributes substantially to the ocean carbon(PIC) 3
cycle and ocean color reflectance. Calcification reduces surface carbonate, decreasing alkalinity. Organic carbon
production via photosynthesis counterbalances this effect. , haptophyte algae, are responsible for theCoccolithophores
majority of the biogenic particulate inorganic carbon production. Coccolithophores generate and  tiny white plates ofshed
calcium carbonate called coccoliths, which are highly efficient at reflecting light, ultimately producing large turquoise
patches in the ocean readily visible in ocean color imagery [ ]. Ocean color remote sensing algorithms have been86
formulated for generating quantitative estimates of particulate inorganic carbon and calcification rates on regional and
global scales [ , ]. A continued, long-term assessment of coccolithophore and particulate inorganic carbon abundance87 88
from satellite imagery will aid in understanding the impact of  on marine organisms reliant on carbonateocean acidification
for the formation of shells [ ].89
Ocean color imagery provides the ability to expand small-scale biogeochemical studies to regional or global scales. For
example, the marine inorganic carbon cycle has been shown to be not only influenced by marine plankton but also by fish
that precipitate carbonates into the surface waters. Extrapolations from satellite-derived  upnet primary productivity
several trophic levels to marine fish [ ] reveal that fish may contribute 3-15% of the total oceanic carbon production [ ].90 91

Applications for Environmental Monitoring

Ocean color remote sensing plays a major role in monitoring and sustaining the health and resilience of marine
ecosystems, including fisheries and endangered species [ ]. Ocean color products are helping to address how40
environmental variability influences annual recruitment of fish stock [ ] and to locate and manage fisheries [ ]. Ocean 92 7

 coupled with other remote sensing products such as  is a fundamental tool incolor imagery sea surface temperature
ecosystem-based management of marine resources [ ].93
Ocean color remote sensing can monitor a variety of acute and chronic hazards influencing the oceans including: harmful

, oil spills, coastal flooding, icebergs and marine debris [ ]. A combination of ocean color, field, andalgal blooms 7
meteorological datasets have been critical in identifying the onset of harmful algal blooms (HABs) , which can produce
toxins and create hypoxic conditions. While toxins cannot be directly observed from ocean color, the onset of potential
harmful blooms can be identified using a chlorophyll anomaly method [ ] in concert with other forecasting tools such as94
field and meteorological datasets. This information can then be passed on to coastal managers and state agencies to put
strategies in place to deal with an impending bloom. A long-term time series of ocean color products can aid in elucidating
forcing and transport mechanisms of these harmful blooms and help improve predictability.
New techniques are being developed for early detection, containment, and clean up of oil spills. Remote sensing can be
used to detect oil spills that can  reflectance properties and the color of the ocean [ ]. Coarse spatial and change surface 95
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, limited spectral bands, cloud-cover issues and high sunlight requirements have generally restrictedtemporal resolution
the usefulness of ocean color imagery for oil-spill detection from polar orbiting satellites [ ]. Moreover, current 96

 may not allow  within hours of data capture. The spatial,temporal, and spectralprocessing methods data availability
resolution needed for oil spill recovery planning requires high-resolution, hyperspectral ocean color radiometers deployed
in geostationary orbit [ ].40
Ocean color imagery has also been used to track marine debris on the ocean surface which can entangle a variety of
pelagic species, such as endangered sea turtles, seals, and whales. The nets also become ensnared on coral reefs and
damage the  and associated organisms that require a healthy reef ecosystem [ , ]. Satellite ocean colorreef structure 97 98
data are part of the methods being developed to locate and identify potential locations of marine debris to aid their
removal from these ecosystems.
Ocean color imagery is also useful in monitoring water quality in inland aquatic water bodies. Nuisance algal blooms,
such as cyanobacteria, cause aesthetic degradation to lakes and reservoirs resulting in surface scum, unpleasant taste
and odor in drinking water (from the production of metabolites such as methyl isoborneol and geosmin), and possible
adverse effects to human health from blue-green algal toxins. Predicting the locations and timing of blue-green algal
bloom using traditional sampling techniques is difficult and hyperspectral remote sensing can be an important tool in such
monitoring efforts [ ].99

Future Directions

Within a few decades, the ability to view the global ocean color regularly through remote sensing has revolutionized the
perceptions about ocean processes and feedbacks to the earth's climate. The decade of continuous ocean color imagery
has provided a foundation for assessing change in the earth's systems and long-term averages or "climatologies" of
products, such as chlorophyll, CDOM, and , have been produced to provide a baseline of ocean  (Fig.PIC biogeochemistry
8). The products obtained from ocean color are now incorporated into all domains of oceanography, global climate
forecasts, military applications, and environmental monitoring across the expansive global ocean and the vulnerable
coastal regions where most of the human population resides [ ]. While successful, the technology and processing of11
ocean color remote sensing is still in its infancy in terms of monitoring the ocean from immediate to climatological
timescales.
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Remote Sensing of Ocean Color. Figure 8 Global climatologies or long-term averages of products derived from the Ocean Color
SeaWiFS sensor from 1998-2011. ( ) Chlorophyll  (mg m ); ( ) colored dissolved organic matter (CDOM) index; ( ) particulatea a −3 b c

inorganic carbon (PIC) (mol m )−3

The relationships between climatological forcing and biological carbon storage in the ocean are complex and not readily
incorporated in models. Ocean color imagery can provide assessments of potential changes to ocean processes
including , surface heating, sediment plumes, altered food webs, , changingprimary productivity harmful algal blooms
acidity, and alterations of benthic habitats in response to shifts in winds and upwelling, clouds and radiative forcing, and
storm intensity and frequency. Recent observed changes in chlorophyll, primary production, and the size of the
oligotrophic gyres from ocean color satellites are compelling evidence of significant changes in the global ocean. A recent
study demonstrates that a time series of at least 40 years in length is needed to unequivocally distinguish a global
warming trend from  [ ] and sustained long-term observations of ocean color are in jeopardy [ ].natural variability 6 40
In addition to sustained imagery, there is a need for integrating ocean color imagery from different platforms to monitor
the oceans and aquatic habitats at a variety of desired spectral, spatial, and temporal resolutions. Integration of satellite
sensors with suborbital platforms will allow for better assessment of vulnerable marine and aquatic habitats, as well as
responses to hazards such as harmful algal blooms, oil spills, and storms that cause coastal flooding and erosion. Active
sensors, such as  (LIDAR) , will allow us to probe into the depths of the oceans. Moreover,Light Detection and Ranging
integrating surface ocean color measurements with three-dimensional measurements and models of the ocean will be
increasingly important in discerning a changing ocean [ ].49
Finally, the approaches or algorithms for conducting ocean color remote sensing will be augmented as more spectral
channels become routinely available and as ocean properties change. Purely statistical or empirical models are only
accurate when conditions are similar to past conditions. When considering a changing ocean, the cause of the color
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change must be carefully assessed to separate the spectral variability due to phytoplankton from other sources of
variability, such as sediments, CDOM, and even atmospheric aerosols. Considerable growth is also expected in
approaches and technology for remote sensing of coastal habitats and assessing acute and chronic hazards.
Comprehensive and consistent field observations from ships to autonomous vehicles and floats are required to assess
the accuracy of satellite-derived products, build improved algorithms, and provide better linkages between surface
measurements made from space and the processes within the water column [ ]. Future effort will also be directed at49
assimilation of ocean  into global circulation and climate models. As outlined above, remote sensing ofcolor imagery
ocean color is a complex discipline requiring radiometrically accurate and calibrated sensors, advanced techniques for
atmospheric correction of aerosols and dust, and approaches that can deduce the source of variability in the color signal
measured by a sensor. With the many important applications of ocean color remote sensing, from climate forecasting to
environmental monitoring, a consistent and coordinated international investment in education, research, and technology is
required to maintain and advance this dynamic field.
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