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Seagrass meadows are important environments for the blue carbon budget and are potential early indicators for
environmental change. Remote sensing is a viablemonitoring tool for spatially extensivemeadows butmost cur-
rent approaches are limited by the requirement for in situ calibration data or provide categorical levelmaps rath-
er than quantitative estimates of direct physiological significance. In this paperwe present amethod formapping
water depth and the leaf area index (LAI, ratio of leaf area to substrate area) of Thalassia testudinum meadows,
based on radiative transfer model inversion using an embedded three-dimensional aquatic canopy model. Vari-
ations in reflectance due to leaf length, leaf position, sediment coverage on leaves, water depth and solar zenith
angle were included in the model to parameterise uncertainty propagation. The model revealed canopy reflec-
tance as a function of LAI decreases exponentially at all wavelengths up to an LAI around four, beyond which in-
creasing canopy density cannot be determined from reflectance. In addition, sediment coverage on leaves has
surprisingly little effect on the reflectance of sparse canopies because shading is also a contributor to darkening.
The capability of themethod for image basedmapping was assessed through sensitivity analyses and by applica-
tion to hyperspectral airborne imagery of Florida Bay collected by the Portable Remote Imaging Spectrometer
(PRISM), with the uncertainty propagation providing per-pixel confidence intervals on all the estimated param-
eters. Results were consistent across the sensitivity and image analyses and the agreement with field data was
good, given the challenges in validation of submerged pixels at metre scale. Uncertainties were high for LAIs
greater than two inwater of depth 8m, but lower for sparse canopies and shallower water. For water depths ap-
proaching 10m the pixel-to-pixel variation arising fromprocesses at thewater surface upwardswas greater than
the uncertainties arising from the canopy or water column.
The physics-based model inversion approach is readily adaptable to any sensor configuration and to different
seagrass species and canopymorphologies. No site-specific in situ data is required and the uncertainty estimates
can provide an objective basis for interpreting apparent changes in the distribution of seagrasses over time and
space, as revealed by remote sensing techniques.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Seagrasses are highly productive environments and an important
component of the ‘blue carbon’ budget (Fourqurean et al., 2012;
Lavery, Mateo, Serrano, & Rozaimi, 2013). Species such as Thalassia
testudinum can form extensive meadows over many square kilometres,
storing organic carbon in sub-surface rhizomes and the underlying soil
(Fourqurean et al., 2012) and contributing to inorganic lime mud
through calcification (Enríquez & Schubert, 2014) while also playing a
role in carbonate dissolution (Burdige & Zimmerman, 2002). In addition
to carbon storage, seagrasses performmany valuable ecosystem services:
coastal protection through sediment stabilisation and wave attenuation
(Fonseca & Cahalan, 1992); nursery habitats to coral reef fish
(Nagelkerken et al., 2002) and feeding grounds for dugongs (Aragones,
Lawler, Foley, et al., 2006). Mapping and monitoring of seagrasses is a
crucial component of environmental management and is recognised as
such in legislature such as the Water Framework Directive in Europe
(Gobert et al., 2009). Species such as T. testudinum or Posidonia oceanica
can formmeadows over areas of 100's km2, so remote sensing is an obvi-
ous tool for practical monitoring. Changes in meadows can be indicators
of sediment transport patterns (Marbà & Duarte, 1995) or environmental
changes. Environmental degradation may be visible in seagrass beds by
remote sensing long before the consequences for associated environ-
ments such as coral reefs are detectable.

Numerous studies have assessed remote sensing for mapping metrics
of seagrasses related to canopy density, such as biomass (Knudby &
Nordlund, 2011), standing crop (Mumby, Green, Edwards, & Clark,
1997), horizontal projected foliage (Lyons, Phinn, & Roelfsema, 2012),
or even to the level of species identification (Phinn, Roelfsema, Dekker,
Brando, & Anstee, 2008). To identify trends and change events requires
time seriesmonitoring over both short and long term time scales to estab-
lish the baselines for natural variability. Lyons et al. (2012), Lyons,
Roelfsema, and Phinn (2013) demonstrated inter- and intra-annual

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2015.12.001&domain=pdf
mailto:j.d.hedley@envirocs.com
http://dx.doi.org/10.1016/j.rse.2015.12.001
www.elsevier.com/locate/rse


135J. Hedley et al. / Remote Sensing of Environment 174 (2016) 134–147
seagrass temporal and spatial dynamics using object-orientatedmapping
techniques and Landsat imagery. However, object-orientated or per-pixel
classification techniques (Blakey, Melesse, & Hall, 2015) suffer from sev-
eral drawbacks. Firstly they provide discrete classes such as ‘low’, ‘medi-
um’ or ‘high’ density, whereas a quantitative canopy-scale descriptor
such as leaf area index (LAI, the ratio of one-sided leaf area to the sub-
strate area covered) would be more directly relatable to eco-
physiological parameters or photobiology, whichmay be required to cor-
rectly interpret apparent changes (Lambers, Chapin, & Pons, 2008;
Hedley, McMahon, & Fearns, 2014). Regression methods (Mumby et al.,
1997; Knudby & Nordlund, 2011) can provide quantitative estimates
but require in situ data for calibration and so are limited to situations
where this is available. In one recent example Roelfsema et al. (2014)
used multispectral satellite data and object-orientated classification to
produce a time series of maps of seagrass cover at landscape scale
(N100km2)withmedian52%accuracy for four cover categories. However
this analysis utilised around 20,000 manually assessed benthic photos
collected over 9 years. The vast majority of sites do not benefit from this
level of long term survey data. Another disadvantage of classification
and object-orientated methodologies is that they are to some extent
‘black boxes’, in that the actual physical basis (in terms of radiative trans-
fer) or thresholds that determine the classification are not readily known
or interpretable. For example, a time series ofmapswill typically show re-
gions changing fromone class to another; but it can be difficult to assess if
these changes are real or due to some other perturbation (for example in
the water column) that tips the classification over a threshold in certain
locations. In this sense the methods are not very ‘auditable’: the scope
Fig. 1.Radiative transfermodel framework consisting of a coupled canopymodel, water column
the work presented here.
to understand how the result at each pixel is arrived at, or to provide an
uncertainty budget, is very low. Evenwhere good results have been dem-
onstrated at sites that are well studied (Lyons et al., 2013) the transfer-
ability to other sites where less data is available would be hard to
assess. Lack of in situ data for validation or calibration is in general a
major challenge for large scale mapping (100's km2) or retrospective
time series analysis (Wabnitz, Andréfouët, Torres-Pulliza, Müller-Karger,
& Kramer, 2008).

An alternative to the above approaches is that of shallow-water
mapping algorithms based on radiative transfer model inversion, some-
times called ‘physics-based’ methods (Dekker et al., 2011). These
methods establish a parameterised model of the spectral reflectance
as measured by the sensor based on a physical model of light propaga-
tion through the system of interest. In principle this enables the deriva-
tion of bathymetry, water column optical properties and bottom
reflectance without the need for in situ data. Clearly there are un-
knowns or uncertainties in the system, but providing the possible
ranges are adequately characterised these can form the basis of an un-
certainty propagation and be documented as error bars on the associat-
ed estimations at each pixel (Hedley, Roelfsema, & Phinn, 2010; Hedley,
Roelfsema, Koetz, & Phinn, 2012). In the work presented here we have
embedded a Thalassia canopy model (Hedley & Enríquez, 2010) into
the typical form of a shallow-water inversion model (Hedley,
Roelfsema, & Phinn, 2009), such that LAI is estimated at each pixel in
conjunction with bathymetry and other parameters. The relationship
between canopy LAI and reflectance is not precise: the same LAI can
give rise to different canopy reflectances, due to factors such as the
model and atmosphericmodel. Above canopy reflectance is the primary output utilised in
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distribution of leaf lengths, leaf positions, sediment and epiphytes on
leaves, or the interaction of the bi-directional reflectance distribution
function (BRDF) with the incident light field. Using the canopy model
we have characterised these variations and built them into the algo-
rithm, such that they are part of the budget of the uncertainty propaga-
tion. The resulting method has the potential to overcome some of the
drawbacks of the previously discussed approaches. Being based on a
physical model the estimated LAI is traceable through intermediate
values that are easily interpretable, such as the bottom of water column
reflectance. The per-pixel uncertainty propagation provides a basis to
understand if apparent changes over time are within the capability of
the method to determine.

Theworkwas structured as follows 1) the canopymodelwas used to
investigate how different aspects of canopy morphology contribute to
variation in canopy reflectance; 2) the canopy model was simplified
and embedded into a shallow-watermapping algorithm; 3) the capabil-
ity of the algorithmwas assessed by a sensitivity analysis, and 4) by ap-
plication to hyperspectral airborne imagery of seagrass meadows in
Florida Bay, USA. In thefinal section of the paper the implications for ap-
plying themethod to other imagery sources such asmultispectral satel-
lite data are discussed.
2. Methods

2.1. Overview

The methodological steps consisted of: 1) A three-dimensional can-
opymodelwas used to generate a large database of top of canopy reflec-
tances for a canopies with various parameters of LAI, leaf length, leaf
position, and leaf sediment load; 2) The database was queried to pro-
vide insight into the significance of the different factors in contributing
to uncertainty in the relationship between LAI and reflectance; 3) Princi-
pal components analysis and regression was used on the database to
produce a simplified functional form for top of canopy spectral reflec-
tance as a function of LAI and one or more uncertainty terms; 4) The
top of canopy reflectance function was embedded into the shallow
water mapping algorithm of Lee, Carder, Mobley, Steward, and Patch
(1998, 1999) and a sensitivity analysis based on image noise was used
to investigate LAI detectability as a function of depth; 5) Finally, the
Fig. 2. Three factor experimental design for variation in canopy structure, for a given LAI (vertic
also by leaf position (horizontal axes).
LAI algorithm was applied to hyperspectral airborne data of Thalassia
beds in the Florida keys and the LAI estimates were compared to in
situ survey data (for brevity Thalassia is used to refer to T. testudinum
throughout). The following sections provide details on each component.
2.2. Radiative transfer modelling

An existing radiative transfer model for seagrass canopies (Hedley,
2008; Hedley & Enríquez, 2010; Hedley et al., 2014) was used to
model the reflectance just above the top of the canopy (Fig. 1). The
model is fully three-dimensional, the leaf positions are determined by
a physical dynamic model for leaf bending under a simple wave force
model, allowing canopies to assume naturalistic positions from upright
to flattened (Fig. 2). Canopiesweremodelled at a scale of 30× 30 cm for
LAIs from 0.1 to 10 in 15 sets, each set consisted of three leaf length
treatments, long (L), medium (M) and short (S), each in four positions:
two described as relatively ‘flattened’ vs. two ‘upright’ (see examples in
Fig. 2). Leaveswere arranged in shoots of 2, 3 or 4 leaves and for theme-
dium length treatment the mean leaf length was 12 cmwith a standard
deviation of 6.0 cm, for the short treatment the mean and standard de-
viation were halved and for the long treatment they were doubled. The
leaf length distributionswere chosen to be comparable to actual canopy
data (Hedley & Enríquez, 2010), but with a simple form of variation be-
tween the treatments that could be easily and generally interpreted (as
opposed to restricting the results to metrics of actual canopies). Five
random repeats were generated for all canopy structure combinations
in order to provide a substantial dataset (Table 1).

For simplicity Thalassia leaf spectral reflectance and absorptance
were assumed constant along the leaf lengths and were derived from
the reflectance and absorbance spectra reported in Zimmerman
(2003) (Fig. 3b). The method of converting absorbance (a logarithmic
quantity as reported by spectrophotometer) to absorptance (the
absorbed proportion of the total light incident onto a leaf surface) is
given in Hedley and Enríquez (2010). The inclusion of reflectance vari-
ation between and within-leaves was considered out of scope for this
work, although it can be accommodated by the canopy model (Hedley
& Enríquez, 2010). Five different sediment reflectances were employed
(Table 1, Fig. 3a), four from the Great Bahama Bank (Dierssen,
Zimmerman, Drake, & Burdige, 2010) and one from a data set collected
al position) canopy structure can be varied in terms of the distribution of leaf lengths and



Table 1
Experimental design ofmodel runs for establishing the variation of above canopydiffuse reflectancewith LAI and other factors (note SZA is solar zenith angle). Thefinal database contained
43,200 spectral reflectances.

n

Leaf
length LAI Position

Sand
reflectance

Leaf
reflectance SZA Depth

Random
repeats Total

×3 ×15 ×4 ×5 ×1 or ×3 ×2 ×3 ×5 43,200

S
M
L

0.1 to 10 2 upright
2 flattened

Andros
Palau
North
Exuma
Grapestone

Clean
10%, 25% sediment covered
(only with North sand)

26°
56°

1 m
5 m
10 m
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in Palau, Micronesia (Hedley, Mumby, Joyce, & Phinn, 2004). The inten-
tion was to provide a methodology that could be applied under a wide
range of sediment brightness. The Palau and ‘North’ sediment reflec-
tance profiles were very similar (Fig. 3a), the North reflectance was
used in the majority of the subsequent analysis. At the site where re-
motely sensed data was acquired the Thalassia leaves were frequently
partially covered in sediment (Fig. 4) so two additional treatments in-
cluded modifying the leaf reflectance and transmittance equivalent to
10% and 25% coverage by sediment (Table 1). This was simulated by
making the leaf reflectance a linear mix of leaf and sediment reflectance
in ratios 9:1 and 4:1 and adjusting the leaf transmittance at each wave-
length such that the ratio of transmittance to transmittanceplus absorp-
tance was preserved. The maximum of 25% leaf sedimentation was
visually estimated fromphotographs of the canopies (Fig. 4). In practice,
individual leaves could be clear of sediment or almost completely cov-
ered, 25%was estimated as a reasonable averagefigure for themost sed-
iment laden images.

The canopy model was parameterised to calculate in 16 spectral
bands of 20 nm width over the range 400 to 720 nm. All reflectances
were resampled to these bands, the effect of which was only to smooth
the smallest spectral features (Fig. 3a vs. Fig. 4). This smoothing is rela-
tively inconsequential to the subsequent analyses which minimise the
least-squares fit over the whole spectral shape.

In this application themodel was used to calculate the diffuse reflec-
tance above the canopy atfixed height of 27 cmabove the sediment sur-
face. So although the leaves may be relatively higher or lower
dependent on leaf positions the virtual sensor is not moved up or
down. The water optical properties within the canopy were fixed as a
typical set of reef lagoon inherent optical properties (Hedley &
Enríquez, 2010), while in later analyses the overlyingwater column op-
tical properties were variable (see below). Fixing the within-canopy
IOPs was necessary for computational efficiency; the error introduced
will be small and insignificant compared to other factors.

Since the canopymodel is three-dimensional it requires a directional
light field on the top of the canopy (Fig. 1). This was provided by gener-
ating bottom of atmosphere direct and diffuse irradiances with
Fig. 3. (a) The five sand reflectance spectra used in the modelling (Table 1), (b) the reflectance
libRadtran (Mayer & Kylling, 2005), combining these with the sky
model of Grant, Heisler, and Gao (1996) and propagating this through
a plane-parallel water column model (PlanarRad, www.planarrad.
com, functionally similar to HydroLight, Mobley, 1994). Since the objec-
tive was to model diffuse reflectance of the canopy the purpose of the
sky and water column modelling is to provide a reasonable directional
distribution of radiance at the bottomof thewater column. The canopies
are not actually Lambertian reflectors (Hedley & Enríquez, 2010) but to
develop the image analysis algorithm presented later it is required to
treat them as such. The modelling was repeated for depths of 1, 5 and
10m, and for solar zenith angles of 26° and 56° (Table 1) to demonstrate
if the canopy bi-directional reflectance function and incident light field
produced any variation in the diffuse top of canopy reflectance, and to
find the mean diffuse reflectance over a range of realistic light fields.
The solar zenith angles corresponded to solar midday and 3 h either
side of midday at the Florida Bay field site. The effects of relative solar
azimuth were considered out of scope for this study, so the modelled
light fields were azimuthally averaged.

2.3. Functional form of spectral reflectance

For each of the model runs covering LAI from 0.1 to 10 the above-
canopy diffuse spectral reflectance, R(λ), was calculated. These results
described the general pattern of variation of reflectance with LAI, but
with additional perturbations due to canopy structure and the other fac-
tors in Table 1. From previous work (Hedley & Enríquez, 2010; Hill,
Zimmerman, Bissett, Dierssen, & Kohler, 2014) it was anticipated that
at each wavelength the basic relationship between LAI and reflectance
would be a negative exponential of the form,

R λð Þ ¼ A λð Þ expð−k λð Þ � LAIÞ þ B λð Þ þ ε λð Þ: ð1Þ

At each wavelength reflectance decreases monotonically as LAI in-
creases. The effect is less as LAI becomes large and an asymptotic reflec-
tance is reached in very dense canopies where adding more leaves has
no further effect on reflectance. The values A, k and B for each
, transmittance and absorptance of Thalassia leaves, replicated from Zimmerman (2003).

http://www.planarrad.com
http://www.planarrad.com


Fig. 4. (a) Photograph showing sediment or calcareous epiphyte covered Thalassia leaves at the test site, (b) spectral reflectance and transmittance of leaves for the treatments of clean and
10% and 25% sedimented (Table 1). Spectra in (b) are resampled to 16 bands of 20 nm interval, and are as used in the canopy model (Fig. 1).
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wavelength were estimated by optimally fitting this function to the
R(λ) from the model runs. The residual error for each model output is
represented by ε(λ), which can be thought of as a spectral vector,
added onto the function expressed by A, k and B and being different
for each canopy instance. The aim was to make a simplified function
to capture this variation, of the form,

R λð Þ≈ Rcanopy LAI; e1; e2;…;λð Þ ð2Þ

where the top of canopy reflectance is a function of LAI, and one ormore
error terms, e1, e2, etc. encompass themajority of the variation in the re-
sidual spectra ε(λ). To do this the LAI rangewas broken down into inter-
vals of 0.5 (i.e. 0.5 ± 0.25, 1 ± 0.25, etc.) and a principal components
analysis (PCA) applied to the spectra ε(λ) in each interval. Typically it
was found that a single scalar parameter e1, multiplied by the most sig-
nificant principal component vector was enough to encompass virtually
all of the spectral variation in ε(λ) and reconstruct the original reflec-
tances to within a few percent (Fig. 5). The range of the scaling factor
e1 required to reconstruct the range of R(λ) in each interval was
Fig. 5. Derivation of the simplified reflectance model from the canopymodel reflectances. (a) A
source data is decomposed into (c) the LAI function and (d, e, f) successive smaller residual spec
percent.
deduced and the offset and scaling required to allow e1 to be expressed
ranging from 0 to 1 was calculated, i.e. e1 → e1[0–1] × (e1max −
e1min) + e1min. From the results at each LAI interval the residual and
e1min and e1max at a specific LAI were calculable by linear interpolation
between the interval centres. The result is a two-parameter model for
above canopy spectral diffuse reflectance,

R λð Þ≈ Rcanopy LAI; e1;λð Þ ð3Þ

in which e1 has no meaning other than it ranges between 0 and 1 and
encompasses almost all of the spectral variation induced by unknown
factors of canopy structure. Two sets of simplified functions were de-
rived for the sensitivity analysis: 1) Assuming clean leaves and incorpo-
rating only the canopy structural variations of Fig. 2; 2) incorporating
structural variations and the different levels of sediment coverage of
leaves of 0, 10 and 25%. The individual functions are derived using re-
sults for a single sediment reflectance only, as in this application it
was assumed that sediment reflectance does not vary across a site.
n exponential model fit captures the LAI dependence, then at each 0.5 LAI interval (b) the
tra. A single residual term is enough to reconstruct the original reflectances towithin a few
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2.4. Model inversion method for image processing

In general, physics-basedmethods for shallowwater remote sensing
establish a forwardmodel for predicting the above-water water-leaving
remote sensing reflectance, Rrs(λ), based on parameters of the water
column and bottom reflectance. This model can then be ‘inverted’ per
image pixel by the use of successive approximation or look-up tables
for spectral matching, to find the best estimate of the input parameters
that give rise to the measured water-leaving reflectance (Dekker et al.,
2011). A typical form of the forward model is,

Rrs λð Þ≈ f P;G;X;H;R λð Þ;λð Þ ð4Þ

where the remote sensing reflectance at wavelength λ is given by some
function f, dependent on the amount of phytoplankton (P), dissolved or-
ganic matter (G), backscatter (X), depth (H), and bottom reflectance,
R(λ). This idea was originally developed by Lee et al. (1998, 1999),
and the equations embedded in the function f, and as were used here,
are given in summary in Hedley et al. (2009). In most applications the
bottom spectral reflectance R(λ) is chosen from a spectral library of in
situ reflectancemeasurements of different bottom types ormaybe a lin-
ear mix of two or more such spectra (Dekker et al., 2011). Then in the
inversion the optimal bottom reflectance and mixing parameter is esti-
mated along with estimates of P, G, X and H by least-squares
minimisation of difference between Rrs(λ) and the image reflectance
in each pixel. Here, in order to estimate Thalassia LAI, R(λ) was
substituted by Eq. (3) giving,

Rrs λð Þ≈ f P;G;X;H; LAI; e1;λð Þ: ð5Þ

By this method the LAI and the error terms can be estimated by the
spectral matching procedure along with the depth and water column
optical properties. The error term gives the degree of freedom to the
model that encompasses the uncertainties due to canopy structure
and position, and leaf sediment coverage if that is included.

Thefinal step required to fully express the uncertainty in the inversion
at each image pixel was to incorporate image and environmental noise.
Eq. (5) is designed to capture the factors that cause variation in the
water-leaving radiance. i.e. factors below the water surface. However, re-
flection from the top of the water surface, atmospheric fluctuations and
sensor noise also cause spectral variation. This is true even if corrections
such as sun-glint correction are applied (Hedley et al., 2005) because
such corrections are not perfect and some variation will remain. This
noise-equivalent perturbation of Rrs, NEΔRrs (Brando et al., 2009), was es-
timated by taking the covariance matrix over a deep water area, where
the subsurface factors expressed in Eq. (5) are assumed to be constant
or have no effect on the water leaving reflectance. This covariancematrix
was then used to simulate the environmental noise. In our method each
pixel was inverted 20 times with a different simulated noise term
added on, giving 20 estimates of the depth, LAI, and the other parameters
in Eq. (5). From these 20 estimates the 90% confidence interval of eachpa-
rameter were deduced at each pixel, being the result of both the environ-
mental above-water uncertainties and the uncertainty due to canopy
variations expressed by e1. Further details on this uncertainty propagation
Table 2
Structure of the sensitivity analyses in terms of theparameter range of simulated spectra and the
as the image analysis. Themodelled spectra are limited to specific cases, e.g. to investigate LAI es
canopies with variable level of sediment on leaves from 0 to 25%. Parameters are: P, absorption
nm; X, particulate backscatter at 500 nmmodified due to solar and view geometry (Lee et al., 1

Analysis Forward modelling

P G X H LAI e1

LAI, 1 m 0.03 0.05 0.01 0.5–1.5 0–6 0–1
LAI, 5 m 0.03 0.05 0.01 4.5–5.5 0–6 0–1
LAI, 10 m 0.03 0.05 0.01 9.5–10.5 0–6 0–1
Depth 0.03 0.05 0.01 0–10 0–6 0–1
methodology can be found in Hedley et al. (2010), Hedley, Roelfsema,
Koetz, et al. (2012) and Garcia, Fearns, and Mckinna (2014).

In both the image and sensitivity analyses the Levenberg–Marquardt
(L–M) algorithm was used to perform the actual spectral matching in-
version of Eq. (5) (Wolfe, 1978). The possible range of the parameter
values were P [0, 0.06]; G [0, 0.1]; X [0, 0.02]; H [0, 20]; LAI [0, 6]; e1
[0, 1] (Table 2). The parameter limits of the water optical properties, P,
G and X, were chosen by reference to a field dataset of inherent optical
properties in reef lagoons (Hedley, Roelfsema, Phinn, & Mumby,
2012). Eq. (5) was evaluated at a wavelength resolution corresponding
to a subset of the bands of the hyperspectral data described below, spe-
cifically 107 bandswith centres from approximately 410 to 710 nm. The
canopy model results and other internal spectrally tabulated data, such
as phytoplankton optical properties (Lee et al., 1998)were resampled to
these wavelengths by linear interpolation. To avoid local optima in the
L–M inversion each inversion was repeated five times with a random
parameter start point and the best matching solution of the five taken.
It was verified by inspection that this gave consistent results implying
the inversion was not hampered by local optima.

2.5. Sensitivity analysis

Given the forward model of Eq. (5) and a method for estimating
above-surface image noise, the first question asked before application
to image data, was what are the fundamental uncertainties that arise
simply from the possibility of multiple solutions of Eq. (5)? That is, as-
suming the model is a perfect representation of reality how do the un-
certainties propagate to the estimation of LAI and depth? This was
investigated by self-inverting themodel using the same image noise co-
variance matrix as described above. That is, Eq. (5) was used to model
Rrs(λ) for a given set of input parameters, a random spectral noise
term was added and Eq. (5) was then inverted by spectral matching
and the estimated parameters compared to the ones used to generate
the Rrs(λ). A sensitivity analysis for LAI estimation at three depth ranges
was conducted, 1± 0.5 m, 5± 0.5m and 10± 0.5m, using a version of
Eq. (5) that in one case included only clean leaves, and in the second
case was based on the clean leaves and the 10% and 25% sediment cov-
ered leaves (Table 2). A sensitivity analysis for depth estimation was
also conducted where depth ranged from 0 to 20 m and LAI ranged
from 0 to 6. In each case 2500 spectra were generated with P, G and X
fixed at the centre of their ranges, but with depth (H), LAI and e1 ran-
domly drawn from a uniform distribution over the specified ranges
(Table 2). In the inversion all parameters were freely variable
over their full range (Table 2). The spectral bands of the modelling
and the noise model covariance matrix were the same as used in the
image analysis described in the next section. The analysis was per-
formed only for the North sand reflectance, again to correspond to the
image analysis.

2.6. Application to imagery and comparison to field data

The model inversion method was tested on hyperspectral airborne
imagery acquired by the Portable Remote Imaging Spectrometer
range used in the inversion. For all analyses the inversion has the samedegrees of freedom
timation at specific depths. All four analyseswere repeated for canopies of clean leaves and
coefficient due to phytoplankton at 440 nm; G, absorption coefficient due to CDOM at 440
999); H, depth in m; and LAI and e1, canopy parameters defining the bottom reflectance.

Inversion

P G X H LAI e1

0–0.06 0–0.1 0–0.02 0–20 0–6 0–1
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(PRISM) instrument (Mouroulis et al., 2013) in Greater Florida Bay, Jan-
uary 2014 (Dierssen, Chlus, & Russsell, 2015). PRISM is a push-broom
imager covering 350–1050 nm with spectral resolution of ~3.1 nm
(Mouroulis, Green, & Wilson, 2008). A set of flight lines were collected
coincidental with a series of in situ LAI and benthic reflectance survey
transects, at an altitude such that pixels were approximately
1 m × 1 m. LAIs were estimated at 2 m intervals along transects of 10–
25 m by counting shoots in 20 × 20 cm quadrats, and measuring
seagrass leaf length and width from samples harvested from the site.
Benthic spectral reflectance was also recorded at the sample points
utilising a submersiblefield spectrometerfittedwith afibre-optic cosine
collector. Upwelling spectral planar irradiance Eu(λ) was divided by a
near-simultaneous measurement of downwelling spectral irradiance
Ed(λ) taken at the same depth and distance from the canopy. In the re-
sults these benthic reflectances as a function of LAI are used as an inter-
mediate validation step. Survey points were located in the imagery by a
combination of GPS measurements and notes on the local pattern of
seagrass density, with survey lines starting on bare sand for example.

Both T. testudinum and the spectrally and physically distinct
Syringodium filiforme were present in the area, and their separate LAI
contributions were determined. Since the scope of the model and vali-
dation is Thalassia, only the data from Thalassia dominated areas were
used, where the percentage of Syringodium with respect to LAI was
less than 25% (extension of the method to include Syringodium is
discussed later). After this quality control screening, coincidentally all
the remaining data was contained within a single flight line and was
based in two areas: two data points in approximately 1.5 m depth and
eleven data points at around 7.8 m depth. The in situ estimated LAIs
ranged from 0 to 3, canopy heights were between 12 and 21 cm. The
spatial resolution of the flight line was approximately 1 m.

Inherent optical properties of thewaterweremeasured at several sta-
tions during image acquisition with an instrument ensemble including a
WET Labs AC-S, an AC-9with 0.2 μm filters and BBFL2 backscatterometer.
This data was processed after image analysis, and so has only been used
for results comparison and not for calibration of the algorithm. In the ap-
plication of the method the same variable range of IOPs was used for
model inversion as shown in Table 2, which are generic ranges and not
a site-specific calibration. Total and particulate absorption and particulate
backscatter were estimated from the instruments according to standard
protocols described in Sullivan, Twardowski, Donaghay, and Freeman
(2005); Sullivan et al. (2006); Twardowski and Donaghay (2001);
Twardowski, Sullivan, Donaghay, and Zaneveld (1999) and Zaneveld,
Kitchen, and Moore (1994). A point of note is that the CTD on the instru-
ment package failed, so estimates of temperature and salinity required for
corrections were made using data from the routine sampling locations of
the Keys Marine Laboratory.

The hyperspectral imagery was initially atmospherically corrected
and converted to Rrs(λ) using amodified version of the ATREM radiative
transfermodel to account for Rayleigh scattering, aerosol scattering and
absorption effects from atmospheric gases (Gao & Davis, 1997). Sun.-
glint was corrected per-pixel by use of the Rayleigh-corrected reflec-
tance at 980 nm (Mouroulis et al., 2013). Following the algorithmic at-
mospheric correction a vicarious calibration adjustment was applied
based on above-water spectral reflectance measurements taken over
sand areas, co-incidentally with the image acquisition. This data was
collected with an ASD FieldSpec 4 with an 8.5° fore-optic, and utilising
a grey Spectralon reflectance panel as a reference, following methods
outlined in Dierssen et al. (2010). The vicarious adjustment consisted
of a spectrally flat scaling, since the spectral shape agreed well but the
atmospherically corrected data was overall too bright in comparison
to the above water measurements. The solar and view zenith angles
are also required by the water column model (although not shown in
Eqs. 4 and 5). The above-surface solar zenith angle was computed
from the acquisition time and location as ~30°, the field data sites
were located close to the flight-line edge implying a view zenith angle
of ~14°.
An approximately 100 m × 100 m segment of the hyperspectral
imagery containing the data points at 7.8 m depth and range of
seagrass density was processed with the inversion algorithm, as
was a smaller area containing the two points at approximately
1.5 m depth. Processing occurred in exactly the same manner as
the previously described sensitivity analysis (with parameter ranges
as in the right hand side of Table 2). The North sand reflectance was
used (Fig. 3) since the empirical data and observation indicated that
a bright calcium carbonate sand reflectance was appropriate. For
comparison, both the canopy model using clean leaves and the
model that included variation due to sediment covered leaves were
used; photographs of the sample points indicated that sediment cov-
erage was common (Fig. 4). A deep water area at the end of the flight
line was used to characterise the above-surface noise covariancema-
trix, and for each pixel 20 noise perturbed inversions were per-
formed to provide the mean results and 90% confidence intervals
for the parameters of interest, in particular LAI and depth.

3. Results and discussion

3.1. Above canopy diffuse reflectance as function of canopy structure and
illumination

As expected, for clean leaves, canopy reflectance at all wavelengths
decreased approximately exponentially with increasing LAI (Fig. 6), all
the sediment reflectanceswere brighter than the reflectance of seagrass
leaves (Fig. 3) so this pattern was consistent butmore pronouncedwith
brighter sediments. The saturation of reflectance at high LAIs, where in-
creasing LAI no longer effects canopy reflectance, is awell described fea-
ture of vegetative canopies in general (Knyazikhin et al., 1998). Fig. 6
implies that for Thalassia with clean leaves, canopy LAIs above around
4 cannot be distinguished by remote sensing. For Thalassia an LAI of 4
is at the upper limit of what could be expected, but for species such as
P. oceanica LAIs of 12 or higher have been reported (Olesen, Enriquez,
Duarte, & Sand-Jensen, 2002).

Variable canopy structure and illumination contributed to variation
in canopy reflectance but not always systematically. Restricting the dis-
cussion to clean leaves (Fig. 6), shorter leaved canopies tend to be
brighter than longer leaved canopies at the same LAI, presumably be-
cause more underlying sediment can be seen between the leaves
(Fig. 6b, see also Fig. 2, leaf length axis). The effect is most pronounced
at LAIs of 2 to 3, at very high LAIs the canopy is densely packed regard-
less of leaf length and the reflectance has low variation (Fig. 6b, high
LAI). Similarly, for mid-range LAIs relatively upright leaf positions
open up the view of the sediment and brighten the canopy (Fig. 6d).
This effect was less systematic than leaf length, because ‘upright’ and
‘flattened’ are subjective categories andnot strictly delimited. Neverthe-
less the observation is consistentwith themodel of Zimmerman (2003)
and Hill et al. (2014) that indicated Thalassia canopy irradiance absorp-
tion increases with leaf bending angle. If these canopy structure uncer-
tainties are assumed to be representative of the variation in real
canopies at a given site, then a reflectance of ~0.08 at 630 nmcould rep-
resent a canopy LAI anywhere from 2 to 3.5 (Fig. 6b). However there are
two caveats to this interpretation: 1) this range of leaf length distribu-
tions and positions may not be present at a single site; 2) although the
pattern seen at 630 nm (Fig. 6) is the same at other wavelengths, the re-
flectances considered spectrally may have more discriminatory power
than at individual wavelengths (note that a wavelength of 630 nm
was chosen for Fig. 6 because there is a large difference between leaf re-
flectance to sand reflectance at that wavelength).

With respect to illumination conditions, varying the depth intro-
duced no systematic variation in canopy diffuse reflectance (Fig. 6c)
but varying the solar zenith angle did (Fig. 6a). The variation in solar ze-
nith angle reveals a BRDF effect: canopieswith LAI less than 3 are slight-
ly darker when illuminated at an increased angle, but for canopies with
LAI greater than 5 the situation is reversed (Fig. 6a). Solar zenith angle



Fig. 6. Effect of individual factors inducing variation in the relationship between LAI and top of canopy diffuse reflectance at 630 nm. All plots are for clean leaves and North sediment re-
flectance. (a) Effect of solar zenith angle of 26° (mid-day) versus 56° (mid-day±3h) over all canopy structures at 1m; (b) Effect of leaf length distribution for all canopy positions at 1mat
midday (c) Effect of depth for all canopy structures at midday (d) Effect of canopy position for all leaf length treatments at midday and 1m depth. (a) and (c) together show effects due to
variable directional nature of the light distribution incident on the canopy while (b) and (d) are both effects of canopy structure.
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variationwas the only treatment on clean leaves that introduced notice-
able variation in reflectance at high LAIs (Fig. 6a, high LAI). Hence some
component of the BRDF is a function of the vegetative canopy structure
alone and is independent of the visibility of the underlying sediment.
BRDF effects in modelled Thalassia canopies been demonstrated previ-
ously (Hedley & Enríquez, 2010), but further investigation of their var-
iation with LAI may be useful. Increase in depth will increase the
diffuse nature of the incident light field, but this will be a weaker inter-
actionwith theBRDF than illumination angle and sohas little systematic
Fig. 7. (a) Effect of sediment on leaves on top of canopy diffuse reflectance at 630 nm. Result
(b) Comparison of simplified canopy model function for clean leaves and sediment covered lea
effect on canopy diffuse reflectance (Fig. 6c). The consequence of the il-
lumination results is that 1) it is appropriate to apply a single benthic re-
flectance at different depths — as is done in the algorithm presented
here, but 2) it may be an improvement to parameterise that benthic re-
flectance for solar zenith angle. Here, we effectively encompass that var-
iation as an unknown into the method. In practice, we know the solar
zenith angle at the time of image acquisition; therefore a future im-
provement could be to make use of that information in the benthic can-
opy reflectance function.
s are for North sediment reflectance and all canopy structures at mid-day at 1 m depth.
ves, and field measurements of top of canopy reflectance at 550 nm.
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3.2. Sediment coverage on leaves

Incorporating sediment reflectance into the leaf reflectance to simu-
late sediment coverage levels of 10% and 25% increased the leaf reflec-
tance and consequentially canopy reflectance (Fig. 7a). The effect was
clearer for LAIs above 3. For low LAIs a part of the darkening due to
the presence of leaves is the shading of the substrate, so leaf reflectance
in itself is not the only control of the initial slope of the reflectance func-
tion. Shading of the substrate can be observed in Fig. 4a. For LAIs less
than around 1.5 the presence of sediment on up to 25% of the leaf sur-
face does not increase the variation in canopy reflectance much beyond
that already present from the canopy structural variations (Fig. 7a vs.
Fig. 6). For LAIs above 3 however, the possibility of sediment on leaves
is a major contributor to variations in canopy reflectance. If a site
could have different locations where leaf sedimentation ranges from
clean leaves to 25% sediment covered then a reflectance of 0.08 at
630 nm could represent a canopy with any LAI from 2 upwards
(Fig. 7a). However, this is based on the assumption that such co-
variation could exist. For example, biophysical constraints may mean
that denser canopies are unlikely to have leaf surfaces with heavy sedi-
ment or calcareous epiphyte load.

Fig. 7b shows the range of canopy reflectances, R(550), that can be
produced by the simplified functional form of canopy reflectance, i.e.
Eq. (5), parameterised for clean leaves only and also for clean and
sedimented leaves. In situ reflectances measured with the submersible
spectroradiometer are also plotted. It is clear that the model with sedi-
ment covered leaves is required to reproduce some of the in situ mea-
sured reflectances, which otherwise would be too bright, especially for
higher LAIs. There remain two outlying data points that are too bright
for their LAI. Photographs of the sample points confirm that coverage
of leaves by sediment was ubiquitous and 25% leaf area coverage
could be an underestimate in some cases.
Fig. 8.Model uncertainties estimated by self-inversion with noise perturbed data. (a, b): unce
algorithm confidence intervals, taken as a mean over the stepped intervals, points show individ
tainties in depth estimates for LAIs ranging from 0 to 5. Left panels (a, c) are for a model param
iment. Results are for North sediment reflectance only.
3.3. Sensitivity analysis

Noise perturbed self-inversion of the combined canopy reflectance
andwater columnmodel (Eq. (5)) revealed the fundamental uncertain-
ty in LAI and depth estimation from water leaving reflectance (Fig. 8).
The first observation fromFig. 8 is that the distributions of the individual
estimates are accurately bounded by the corresponding 90% confidence
intervals provided by the algorithm. This verifies that the method for
per-pixel uncertainty estimation works as expected. Assuming clean
leaves and waters of ~1 m depth, the 90% confidence intervals indicate
LAIs of up to 2 can be estimated to within an error of around ±0.1
(Fig. 8a). Increasing the depth to 5 or 10 m primarily increases the pro-
pensity to overestimate the LAI, at 10 m an input LAI of 2 could be esti-
mated as being from 1.5 to 4. The tendency is to overestimate LAI most
likely occurs because deeper waters are in general darker due to water
column absorption; a dark pixel can be misidentified as a shallower
pixel with higher LAI. Conversely, a bright pixel must be low LAI in shal-
low water; bright pixels have less ways to be produced by alternate sit-
uations. This leads to a potential bias toward LAI over-estimation if
depth has a wide range.

Uncertainty in LAI estimation is greater when leaves can be covered
in sediment or calcareous epiphytes (Fig. 8b). However for LAIs less
than 2, the presence of sediment covered leaves does not greatly impair
the accuracy of LAI estimations in comparison to clean leaves (Fig. 8b vs.
Fig. 8a, LAI b 2). This corresponds to the previous observation that at low
LAIs canopy reflectance has a degree of independence from leaf reflec-
tance due to the contribution of shading (Fig. 7a). Hence variation in
leaf reflectance is not very important in this region. For both the clean
leaf and sediment covered leaf models there is an approximate thresh-
old at LAI greater than 2 where uncertainties in LAI estimation rise rap-
idly. By an LAI of 4 a maximal uncertainty has been reached,
corresponding to the saturation of canopy reflectance (Fig. 6). Note
rtainties in LAI estimation for depths of ±0.5 m around 1, 5 and 10 m, lines are inversion
ual inversions results for 1 ± 0.5 m depth. Diagonal is 1:1 line for reference. (c, d): uncer-
eterised for clean leaves only, right (b, d) also include leaves covered in 10% and 25% sed-
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that the only reason that the LAI estimate confidence intervals have an
upper bound in Fig.8a and b for LAIs greater than 4 is that the inversion
is constrained to amaximumLAI of 6. This is equivalent to supplying the
a priori information that canopies of LAI greater than 6 do not exist.

Estimation of depth is more robust to uncertainties and image noise
than LAI (Fig. 8c and d). With LAI ranging from 0 to 6 and the water col-
umn optical properties as listed in Table 2, the sensitivity analysis pre-
dicts that depth can be estimated with a fairly consistent ±10%
accuracy at least to 10 m. In addition, the result is the same for clean
leaves or when the reflectance of leaves varies with sediment coverage
(Fig. 8d vs. Fig. 8c). This result occurs because the spectral changes
which are the main cues for water depth are present in the spectral
Fig. 9. (a) Inversion algorithmapplied to a section of hyperspectral imagery, overlain on anRGB c
dots are in-situ quadrat data, lines are inversion results for themodel with only clean leaves an
intervals from the uncertainty propagation.
profile of water absorption, which is linearly distinct from the reflec-
tance of sand and seagrass (see examples in Hedley, Roelfsema, Phinn,
et al., 2012). This explains why physics based methods in general are
able to robustly estimate depth even when the associated benthic
cover identification may be inaccurate (Dekker et al. 2011; Hedley,
Roelfsema, Koetz, et al., 2012).

3.4. Hyperspectral image analysis

The broad pattern of the imagery analysis LAI estimations matched
the in situ data well (Fig. 9). Although there were deviations in the LAI
estimations at each point these were frequently within the bounds of
olour composite of three bands. (b) Transects corresponding to thewhite lines in (a), black
d the model with leaves with 0–25% coverage by sediment. Grey areas are 90% confidence
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the uncertainty propagation (Fig. 10). Both of thefield transects at 7.8m
depth started in bare sand, the imagery captures well the increasing LAI
as the transects move into denser canopies, and for LAIs up to around 2
the model for clean leaves and sediment covered leaves are not appre-
ciably different (Fig. 9b). This is in line with the previous discussion
point; the darkening of the canopy at low LAIs is partly independent
of leaf reflectance. The increase in LAI along the transects derived from
the imagery is smoother than the in situ data, which increases and de-
creases point-to-point (Transect 1, Fig. 9b). This underlines thedifficulty
of working with the very different scales of field data and imagery, the
in situ LAIs were determined from 20 × 20 cm quadrats, whereas each
image pixel is covering at least 1 × 1 m or more if the adjacency effects
of the sensor or water column are considered (Mobley & Sundman,
2003). Collecting data sufficient to precisely assess a seagrass LAI algo-
rithm would be onerous. Given the difficulty of spatial registration
(Phinn et al., 2008), LAIs would need to be quantified over areas of at
least twice the pixel size. Visual assessment methods can be applied at
such scales (Mumby et al., 1997) but are inappropriate because the visual
appearance is subject to the uncertainties we wish to assess. The results
of Fig. 9 are therefore reasonable, given the limitations of the in situ data.

For estimated LAIs greater than around 2 the propagated uncer-
tainties in the LAI estimation rise rapidly (Fig. 9b). As expected, the
model that includes sediment covered leaves has higher uncertainties
than the clean leaf model and tends to estimate higher LAIs as LAI in-
creases, consistent with Fig. 7 and the sensitivity analysis (Fig. 8). In
all cases the uncertainty is biased in the direction of potentially higher
LAIs, for the reasons discussed previously — that the model has more
freedom in that direction. A large part of the uncertainty budget in
these results is due to basic environmental-sensor noise in combination
with the depth of thewater (8m). This can be appreciated from the sen-
sitivity analysis of the clean leaf model (Fig. 8a) where depth of 10 m
greatly increases for LAIs greater than 2. The two data points taken
from a depth of 1.5 m have very small uncertainties in the LAI estima-
tion (Fig. 10).

While the focus of our method is LAI estimation, the algorithm also
estimates depth and water column optical properties. The mean depth
of the nine points recorded as being at a site of depth 7.8mwas estimat-
ed as 8.54±0.43m (one standard deviation), which is a statistically sig-
nificant difference (t-test, p b 0.05) and cannot be accounted for by tidal
variation since the tide range in the week of data collection was less
than 0.7 m (UKHO, http://www.ukho.gov.uk/easytide). However, the
90% confidence intervals on depth from the uncertainty propagation
ranged from 7.54 to 10.19, the recorded depth of 7.8m is within the un-
certainty range for five of the nine points. In comparison the sensitivity
analysis was slightly more optimistic regarding expected performance,
predicting at a depth of 8 m the 90% confidence intervals would be 7.5
Fig. 10. LAI estimated by remote sensing model for clean leaves versus in-situ measured
LAI. Vertical bars are 90% confidence intervals from theuncertainty propagation. • — points
from site with depth ~8 m, × — points from site with depth ~1.5 m (on which the error
bars are smaller than the symbol).
to 8.5 m (Fig. 8c, d). In situ depth was not recorded at the individual
points, so the deviation may be the result of a depth range at the site.
At the shallow site depth was recorded as being approximately 1.5 m
andwas estimated as 1.48m at both points with a 90% confidence inter-
val range of 1.35 to 1.58 m. The bathymetric results are therefore as ex-
pected for these kinds of methods, being more accurate in shallow
waters (Dekker et al. 2011).

Over the area depicted in Fig. 9a the estimatedwater optical proper-
ties were consistent and did not vary systematically over light and dark
benthic patches, as might be expected to occur with a multiple param-
eter inversionmethod. Theestimatedvalueswere: P (phytoplankton)=
0.0032±0.0010;G (CDOM)=0.053±0.0035;X (particulate backscat-
ter)= 0.0120±0.0016 (plus–minus is one standard deviation). Table 3
compares the image estimated IOPs to the in situ IOP measurements by
the following methods: the G value is the component of the absorption
coefficient at 440 nm due to CDOM, ag(440), available from the filtered
AC-9 data; the P value represents absorption due to phytoplankton, or
aϕ(440), which for purposes of comparison can be compared to the
measured particulate absorption ap(440), calculated by subtracting
the filtered absorption from the AC-S data; the X value is effectively
the particulate backscatter modified to account for non-zero solar and
view zenith angles and can be converted to bbp at 500 nmby the expres-
sion in Lee et al. (1999).

The two closest IOP stations to the processed area of Fig. 9 were
coded 009 and 015, at distances of 1.4 km and 3.8 km respectively, but
the data of 015 was obtained within an hour of the image overflight
whereas 009 was obtained the previous day. The IOP data of the station
close in time (015) matches the image analysis well, total absorption at
440 nmdiffers by only 20% and particulate or phytoplankton absorption
is very low. CDOMabsorption and particulate backscatter at 015 are also
similar to the image analysis, especially in comparison to station 009
where all values are a minimum of two times greater. While the in
situ IOP data is insufficient to make general statements about themeth-
od accuracy with respect to IOPs (and this is not he the primary objec-
tive of the method) the results suggest the model has good optical
closure in all of its sub-components.

3.5. Application to other image sources and scope for improvement

The mapping algorithm has been implemented within a software
framework that is sensor-agnostic. All calculations in the forward
model can be performed hyperspectrally and convolved to the sensor
band relative spectral response (RSR) functions at the point of spectral
matching (Hedley, Roelfsema, Koetz, et al., 2012). Application to multi-
spectral satellite data such as Landsat-8 or Sentinel 2 MSI is technically
straightforward; the reduced number of bands may increase the uncer-
tainty and under-determine the system but this will be revealed by the
uncertainty propagation. Increased uncertainty would be compensated
for by free availability of multiple acquisitions (Sentinel 2 having a five-
day revisit time at the equator). A time series of points with high uncer-
tainty may have similar statistical power to few points with narrower
uncertainties. Further, note that the benefits of hyperspectral data are
not necessarily substantial: The accuracy of the bathymetry derived
from 17-band hyperspectral data in Hedley et al. (2009) is similar to
the resampled five-band analysis of the same data in Hedley,
Roelfsema, Koetz, et al. (2012). If the phenomena to be derived are spec-
trally broad-band and linearly separable, as water column absorption
and benthic reflectance are, then fewer wider bands maybe sufficient
to capture the major patterns. High quality atmospheric correction of
the data is required and may be challenging for these sensors in coastal
environments.

Spatial resolutions of 10 to 30 m as provided by sensors such as
Landsat, Sentinel 2 MSI or the historical SPOT series will require re-
interpretation of the uncertainty estimates. The spatial scale of the canopy
modelling is such the canopy reflectance at a scale of 30 × 30 cm is con-
sidered representative of a whole pixel. For example, if the canopy is

http://www.ukho.gov.uk/easytide


Table 3
Inherent optical propertiesmeasured by in situ instruments at two stations and as estimated by image analysis. Note purewater absorption aw(440)=0.0064m−1 (Pope& Fry, 1997) and
total absorption a= aw+ ap/ϕ+ ag. Error terms are plus–minus one standard deviation, from instrument acquisition cycle repeats for in situ data and over the pixels of the processed area
for image data.

Station Time and date (local time) Latitude Longitude Total absorption Particulate or phytoplankton CDOM Particulate backscatter

Total a(440) ap(440) or aϕ(440) ag(440) bbp(550)

EST ° ° m−1 m−1 m−1 m−1

009 12:10
13 Jan. 2015

24.7805 −80.7982 0.1540 ± 0.0094 0.0567 ± 0.0065 0.0919 ± 0.0022 0.0167 ± 0.0010

015 11:27
14 Jan. 2015

24.7469 −80.8136 0.0514 ± 0.0063 0.0074 ± 0.0045 0.0396 ± 0.0034 0.0021 ± 0.0006

Image 10:12
14 Jan. 2015

24.7718 −80.7870 0.0630 ± ≈0.0045 0.0032 ± 0.0010 0.0530 ± 0.0035 0.0083 ± ≈0.0011
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pushed over by wave action that would be considered homogenous over
the whole pixel. While this may be reasonable for 1m pixels, for pixels of
30m it ismore likely that any individual pixelwill contain amixof canopy
states at anymoment in time. Therefore the canopy component of the un-
certainty budget is likely to be an over-estimate for larger pixels. Howev-
er, the estimates would be an upper bound of the uncertainty which is
preferable to underestimating the uncertainty. In general any uncertainty
propagation does require a-priori decisions about the range of situations
that can occur at the spatial scale of the imagery and across the area to
be analysed. This presents an inevitable chicken-and-egg situation when
mapping areas that lack field data.

At larger pixel sizes, LAI is likely to be variable within a pixel and the
LAI estimate returned by the algorithmmay not correspond to themean
LAI over the pixel. A sensitivity analysis would be recommended to ver-
ify that the propagation of uncertainties under conditions of sub-pixel
patchiness does not bias the result.

Due to the available validation data, the application presented here
was over a much smaller area than the 10's of km2 scale and up at
which remote sensing becomes really useful. At larger scales variation
in optical properties of the water would be expected, but the method
can accommodate this variation since the optical properties are not
fixed but estimated per-pixel, limited by the specified ranges. Variation
in water optical properties is potentially a more significant problem for
classification or regression approaches. The current limitation of the
method is that by design it is restricted to environments that are dom-
inated by T. testudinum and the underlying sediment. The presence of
other benthic types requires separate processing to exclude them
from the analysis. Thalassia forms large meadows and for many sites
of interestmanual delineationmay be adequate. In other cases an initial
classification or object-orientated image segmentation could be per-
formed (Phinn, Roelfsema, & Mumby, 2012). However within a mead-
ow, and as with the Florida Bay site used here, areas can be composed
of multiple species such as S. filiforme mixed with Thalassia, or contain
patches of disconnected Thalassia wrack. Thalassia wrack in particular
is brown due to leaf senescence, collects on the sea bed and appears
dark in images. By the current algorithm it would be identified as a
high LAI area, but is functionally very different. Extending the method
to handle multiple species or benthic types is conceptually straightfor-
ward. The canopymodel has already been applied to themorphological-
ly very distinct species Amphibolis griffithii (Hedley et al., 2014) and can
accommodate any seagrass or benthos that can be morphologically
characterised. So other bottom types could be modelled in isolation or
in mixtures and a simplified canopy reflectance function like Eq. (3)
established with one or more additional parameters to describe the
composition. Undoubtedly uncertainties will increase and the
attempted discriminationmay be infeasible, but this would be revealed
by the uncertainty propagation. For optimal discrimination between
species or disconnected wrack, spectral matching weighted at wave-
lengths of discriminatory spectral features may be required.

Finally, the upper limits of the uncertainty are bounded by the a-
priori designated maximum LAI the algorithm will consider (Fig. 8).
This will also govern the best estimates of the LAI for canopies that are
dense and close to reflectance saturation. This choice of maximum LAI
therefore provides a-priori information that assists the algorithm, but
this is not the only a-priori information that could be supplied. For ex-
ample the highest LAIs for both T. testudinum and Posidonia spp. are
found in shallowest waters (Collier, Lavery, Masini, & Ralph, 2007;
Olesen et al., 2002). The uncertainty propagation gives the joint proba-
bility distribution of LAI and depth so this a-priori knowledge could be
exploited by a Bayesian inference rule to reduce uncertainties, as
could any other known constraints on seagrass distribution
(Patenaude, Milne, Van Oijen, Rowland, & Hill, 2008).

4. Conclusions

Aphysics-based remote sensingmethod for estimating leaf area index
of seagrass canopies has been developed. The method is applicable to
areas dominated by T. testudinum, an important species for organic and
inorganic carbon storage forming large meadows in tropical and sub-
tropical coastal environments. The method includes a per-pixel uncer-
tainty propagation including both image noise and uncertainties due to
canopy structure. In this paper we have demonstrated the consistency
of results from this method across sensitivity analyses and application
to hyperspectral imagery with in situ LAI data. The following key points
have been noted:

1) Variation in canopy structure such as the distribution of leaf lengths
and leaf positions causes variation in canopy reflectance which at a
single wavelength can be equivalent to the difference between an
LAI of 2 and 3.

2) Remote sensing analysis for estimation of LAI at low LAIs is robust to
variation in leaf reflectance because for thin canopies shading is a
key aspect of the darkening of canopy reflectance and not only the
leaf reflectance itself.

3) Sediment on leaves or bright calcareous epiphytes does cause uncer-
tainties or errors in the estimation of LAI at high LAIs. If the analysis is
parameterised to include the possibility of sediment covered leaves
with the correct representative probability distribution, the uncer-
tainties may be high but the estimates will be unbiased. Otherwise
there could be a systematic over or under-estimation of LAI.

4) For depths approaching 10 m, noise introduced from the water sur-
face upwards, including surface reflectances and sensor noise, dom-
inate the uncertainties in LAI estimation. At increasing depths
canopy structure uncertainties are relatively unimportant.

5) Patterns of uncertainty estimated by noise-perturbed self-inversion
can be consistent with actual image analysis, but in general this ap-
proach is limited by knowledge of the appropriate distribution of
input uncertainties. The site of interest has to be well characterised
in order to know what range of possibilities exist.

6) BRDF effects introduce a systematic effect of solar zenith angle on
canopy reflection. Since solar zenith angle is known this uncertainty
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could be eliminated by a parameterised canopy model that includes
a dependency on solar zenith angle.

7) Overall, the canopy reflectance model compared well against in situ
reflectance measurements, and the remote sensing analysis pro-
duced LAI estimates that compared well to field data. Importantly,
the method does not require empirical calibration data, but it does
require imagery with accurate radiometric correction.

The key strengths of the method are the provision of per-pixel un-
certainty estimates and that empirical calibration data is not required.
Both featuresmake themethod amenable to time series analysis. Appli-
cation to multispectral data such as Landsat or Sentinel 2 MSI may in-
crease uncertainties but over a time series statistically significant
trends may still be detectable: the uncertainty estimates providing a
quantitative basis upon which to make this assessment.
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