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The capability for mapping two species of seagrass,Thalassia testudinium and

Syringodium liforme, by remote sensing using a physics based model inversion mbabd

was investigated. The model was based on a three-dimensiori@anopy model combined
with a model for the overlying water column. The model inclugl uncertainty propagation
based on variation in leaf re ectances, canopy structure, \&ter column properties, and
the air-water interface. The uncertainty propagation endbd both a-priori predictive
sensitivity analysis of potential capability and the genation of per-pixel error bars when
applied to imagery. A primary aim of the work was to compare th sensitivity analysis
to results achieved in a practical application using airboe hyperspectral data, to gain
insight on the validity of sensitivity analyses in generaResults showed that while the
sensitivity analysis predicted a weak but positive discrimation capability for species, in
a practical application the relevant spectral differencesere extremely small compared
to discrepancies in the radiometric alignment of the model #h the imagery—even
though this alignment was very good. Complex interactions étween spectral matching
and uncertainty propagation also introduced biases. Abtl to discriminate LAl was
good, and comparable to previously published methods usinglifferent approaches. The
main limitation in this respect was spatial alignment withhe imagery within situ data,

which was heterogeneous on scales of a few meters. The resudtprovide insight on
the limitations of physics based inversion methods and seagss mapping in general.
Complex models can degrade unpredictably when radiometri@lignment of the model
and imagery is not perfect and incorporating uncertaintiescan have non-intuitive
impacts on method performance. Sensitivity analyses are uyger bounds to practical
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capability, incorporating a term for potential systemati@rrors in radiometric alignment
may be advisable. Whil€eT. testudiniumand S. liforme were too spectrally similar to be
discriminated purely on spectral grounds, mapping of theseand other species may be
achievable by exploiting co-incident factors based on ecalgical zonation.

Keywords: seagrass, remote sensing, inversion, hyperspect ral, leaf area index, species

INTRODUCTION sensitivity analyses and uncertainty propagation are keystool
for predicting capability and informing on sensor desidnipin
Seagrasses are a key biotic component of coastal enviroemegt a|., 2001; Hochberg and Atkinson, 2003; Hedley et al.,[£012
and provide numerous ecosystem services such as oxygenis: Botha et al., 20)3heir results are not often directly
production, regulation of water quality, sediment stalition,  compared to practical image analyses, to determine if the
protection from wave energyFpnesca and Cahalan, 1992 predictions of the sensitivity analysis are borne out in picet
organic and inorganic carbon sequestration(iquez and Physics-based inversion methods have been applied in
Schubert, 2014 and nursery habitats for sh of commercial seagrass environmentDdkker et al., 2011; Hedley et al.,
importance Beck et al., 20Qor that have a role in associated 2015 and are in theory more transferable, since they can be
habitats such as coral reefsggelkerken et al., 2002; Verweij parameterized generically and are not linked to any specic
et al., 2008 Increasingly ecosystem services are recognized Qe o imagery. Being based on a physical model rather
have real economic valu€gstanza et al., 19p@and seagrasses than statistical inference, these methods also facilitasatgr
fall under a number of national and international initiate understanding of the fundamental limitations and uncenigs.
for protection, such as the Water Framework Directive inpowever, applying physics-based methods presents a di erent set
Europe (obert et al., 2009 the Convention on Biological of challenges. In particular the input parameters and the model
Diversity (United Nations, 199 the Ramsar convention ghoyld encompass all the major sources of variation, otreswi
(Ramsar Convention Secretariat, 2113 spectra resulting from those variations may be non-physicahfr

Using satellite or airborne imagery for monitoring and the point of view of the model, leading to errors in estimation
management of seagrasses is an attractive proposition dieént oy nder-estimates of the uncertainty. For the same reason

global and spatial extent, estimated at 1_77'00@ kareen and  5ymospheric, and water interface corrections (sun-glintysi
Short, 200§ Published demonstrations include estimation of},q performed with high accuracyspodman et al., 2008any
canopy biophysical parameters such cover, biomass, leaf argacrepancies in the radiometry of the imagery with respect to
index, and speciesMumby et al., 1997; Phinn et al., 2008;ha¢ of the model will lead to inaccurate resullts.

Knudby and Nordlund, 201l The majority of approaches |, his paper we present a two-species physics-based model for
use classi cation or regression based on spectral re e‘ﬂancmapping seagrass species, canopy density (leaf area index, LAI),
in one or more_wavelength ban_ds._ That these methods cagy,q depth. As an advance to previous woHeglley et al., 2095
deduce biophysical parameters indicates that, at least undgfe new model incorporates two specidhalassia testudinum
some conditions, the |n|Iorrrr]1at|or(1j IS pr.ese.nt |nche remote,ng Syringodium liforme and incorporates uncertainty in the
sensingre ectar_meto mal et.ese etgrmlnatlons. owém_en leaf re ectance of both species, in addition to variation in
empirical techn!qugs it is di cult to infer the transfer_abiy canopy structure, water optical properties and depth. Here we
and ge“efa' limitations: would.the sgme.result be achievabl describe the application of the model in a sensitivity analysis
another site, for another species, with di erent depth or water, 4+ hyperspectral imagery of Florida Bay. A key aim of
conditions? the work was to gain insight into the relationship betweese th

'Yheoretical and practical method performance, in the context

IS that of physms-pqsed approaches, which rather .tha.n USINBe included uncertainties. For example, does including more
in-situ empirical training data, rely on the parameterization Ofuncertainties lead to an algorithm that has poor discriminat

a phy3|c_a| model for spectral re ectan(i_e as se?n by a remob%th theoretically and in practice? Which objectives: depth,
sensing instrument. The model is then “inverted” by sucieess LAl or species; are most compromised by the introduced

approximation (.ee etal., 199%r look-up tables {lobley etal., uncertainties, and again does the theory (sensitivity ysis)

2009 to deduce which biophysical parameter values can produce . L
. ) ) match the practice (image application)? The results are retevan
the re ectance in each pixel. The model incorporates a rang

of possibilities for bottom type and the optical properties ofF’or improving the incorporation of uncertainties into physics-

. . . meth nd for interpretin nsitivi nal ¢
the water, this represents what is not known about the site oPaSEd et odg, and o! Fe preting sensitivity analysesién t
context of practical applications.

can vary from pixel to pixel. These variations can form the In summary the key objectives of the work presented here
basis for uncertainty propagation, the possibility of multiple .

solutions within the bounds of instrument or environmental '

noise determines the fundamental limitation of the methodl) Develop the conceptual framework for a multi-species model
(Hedley et al., 2012bIn addition, the underlying model can with variation in leaf re ectance, canopy structure, depthga
be used for sensitivity analysis before image processingleWh  water optical properties, and parameterize that model.
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2) Understand which sources of variation and factors arelata to model them as circular volumes is not available and
theoretically limiting in the mapping of species and leaf areavould be di cult to obtain in practical terms. The canopy model

index, with respect to that model. is also designed such that all leaves originate at the satbstr
3) Assess the capability of the method in a eld test withwhereas, unlikélhalassiaSyringodiumhas a short shoot from
hyperspectral airborne imagery. which leaves branchEiseman, 1980 Since the application

4) Compare the predicted capability to the actual capabilitg, anhere is remote sensing and not within-canopy light elds for
to understand the basis of discrepancies between theoretigazhotobiology Hedley et al., 20)4hese compromises are most

and achievable performance. likely optically insigni cant in the context of the other fears
5) Draw conclusions on the capability for mapping seagrassuch as canopy positiorFigure 1), depth, and water column
species and leaf area index by remote sensing. optical properties.
An important consideration was to incorporate variation
METHODS in leaf optical properties, since the previous modele(ley
et al., 201p assumed everyThalassialeaf had the same
Overview re ectance. In reality leaf re ectance varies at many szale

The following sections discuss successive components of th®ong the leaf length, between leaves and between sitefdy
methods starting with the canopy re ectance modeigure 1A); and Enriquez, 2030 Using only a single re ectance and
the above-water re ectance model which combines the canopgbsorptance spectra for all leaves represents an underestimat
model and a water column modeFigure 1B); the sensitivity in that component of spectral variation, but how to quantify
analysis used to understand the fundamental limitations ofhe appropriate variation at given spatial scale is not obvious.
spectral separability, and nally the image analy$igggre 10. In this study each species was represented by three pairs
The steps in the development of the physics-based model aof re ectance and absorptance spectra, corresponding to low,
similar to those described idedley and Enriquez (201,Medley  medium and high re ectance, coupled with high, medium, and
et al. (2015)so here the description is briefer and focuses on théow absorptance Kigure 2). The re ectance and absorptance
key di erences in the current work. The two species consideredata for Syringodiumand Thalassideaves were collected using
are T. testudiniumand S. liforme, for readability these are samples of clean leaves from the Puerto Morelos reef lagoon,

henceforth referred to simply &halassiaand Syringodium Yucatan, Mexico. Leaf re ectance spectra were measured using
an Ocean Optics USB2000 spectroradiometer according to the
Canopy Re ectance Model methods described inasquez-Elizondo et al. (201 Re ection,

The rst step was to conduct many runs of a three-dimensionaR (I ), was measured with a 2 mm diameter ber optics placed
canopy model Figurel) for monospecic Thalassia over the surface of the sample at an angle ofGi&and a
Syringodium,and 50:50 mixed canopies in terms of LA, in distance of 5mm with a Te on panel as a reference. Di use
order to establish the distribution of top of canopy spectralillumination was provided from light re ected from a semi-
re ectance as a function of species, LAI, and canopy structursphere coated with barium oxide (BaO) illuminated was with
and position. Seagrass meadows are not monospeci ¢ in realigy white LED ring (450—650 nm) located around the sample,
but often eitherThalassieor Syringodiunmcan represent greater plus violet-blue LEDs and halogen lamps, to increase the di use
than 70% of the total above-ground biomass of the macro-phytallumination below 450 nm and above 650 nivigsquez-Elizondo
benthic community in Caribbean coastal habitatsn(iquez et al., 201). Transmission spectra were determined ggl )
and Pantoja-Reyes, 2004 range of community compositions D 10 P() whereD(l ) denotes absorbance, using a conventional
are also common, associated with environmental conditionspectrophotometer (AMINCO DW?2, USA) controlled by an
(Medina-Goémez et al., 20).6By including monospeci ¢ and OLIS data collection system equipped with an opal-glass in
50:50 canopies in the model the idea was to cover the range fobnt of the detector, following the methodology proposed by
what might occur, with the concept of a mixed canopy includedShibata (1959and described irEnriquez (2005and Vasquez-
The technical details of the model itself are describeH@ulley  Elizondo et al. (2017)Absorptance estimations were calculated
(2008) Hedley and Enriquez (201,0and Hedley et al. (2014, as A (1) D 1 TL() R.(1 ). For Syringodium leaves
2015) Table 1gives the full details of the treatments included inwere sampled from six sites and the three re ectance and
the model. absorptance pairs were selected from 193 optical determimgtio
The factors of canopy structure and position were considereds representative of the range in the data. Hdralassia
a source of variation, leaves were modeled as exible stripgbsorptance the model describedHiedley and Enriquez (2010)
that under simple model of wave motion assume naturalistiszvas used to generate spectral absorptance based on 50, 60,
canopy positions, of which four treatments were used, two o&dnd 70% PAR absorptance, a typical range as shown in that
each termed loosely “upright” and “ attenedTéble 1). The paper. Additional re ectance measurements of leaf samples,
leaves are modeled as re ecting and transmitting surfac@s Onot included in Hedley and Enriquez (2010yere taken to
cm wide for Thalassiaand 0.25 cm wide folSyringodium In  provide the three re ectance spectr&igure 2A). For each
reality Syringodiurmeaves are circular in cross-section, howevemdividual modeled top of canopy re ectancdgble 1) one of
most previous modeling work and measurements of re ectiornthe re ectance-absorptance pairs was selected for each specie
and transmission treaByringodiumleaves in the same way as This means that the spatial scale of the variation that islidet!
at leaves {Thorhaug et al., 2007; Stoughton, 200Bhe optical was assumed pixel-to-pixel in a remote sensing context. This
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A Parameterisation of canopy variation , B Canopy reflectance and water column model
Variation in leaf reflect:
oo | end sbsorptance Ris(\) ~ f(P,G,X, H, (type),LAL e1, \)
g 02 Simplified canopy
&
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FIGURE 1 | Overview of seagrass re ectance model and analysis(A) Canopies are parameterized by four factors: Compositionehf area index (LAl), leaf lengths,
and leaf position.(B) A three dimensional canopy model estimates the top of canopye ectance over all conditions and the results are reduced ta simpler functional
form that includes the water column.(C) A spectral matching procedure applies the simpli ed model irsensitivity analyses and image processing.

TABLE 1 | Experimental design of model runs for establishing the vation of above canopy diffuse re ectance with LAl and other fetors.

Leaf length LAl Position Sand re ectance Leaf re ectance Sz A Depth Random repeats Total
Thal. X3 x 11 x4 x1 x1 X2 x3 x5 3,960
short Max. 6.5 2 upright A random choice 26 im
medium 2 attened of 1 out of 3 each 56 5m
long time 10m
Sy. X2 X9 X4 X1 x1 X2 X3 X5 2,160
short max. 5.5 2 upright A random choice
long 2 attened of 1 out of 3 each
time
Mix x1 x9 x4 x1 x1 X2 x3 x5 1,080
Thal. 2 upright A random choice
medium 2 attened of 1 out of 3 each
Sy. time for Thal. and
short Sy.

Thal, were monospeci ¢ Thalassia canopies; Sy, Syringodium; ahMix was a mix of Thalassia and Syringodium that is on average 50:50 in terms oAL SZA denotes solar zenith angle.
For Thalassia leaf length distributions in terms of mean and standadeviation were: short 6 3 cm; medium 12 6 cm; long 24 12 cm, for Syringodium, short 25 10 cm; long
50 20 cm. Each column shows the number of treatments and the nal column thenumber of canopy model runs used to characterize the distribution of top of canopy rectances.

inclusion of variation in leaf re ectance is approximate, astreatment because it could lead to spectral di erences beiwee
the appropriate variation at a given spatial scale is unknowrthe species for purely numerical reasons. Two spectra, as
However, to include no variation at all would be the weakessingle data points, could have a distinguishing feature at
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FIGURE 2 | Leaf level re ectances and absorptances as used in the modeig for (A,C) Thalassiaand (B,D) Syringodium Each plot shows three lines, corresponding
to the high, medium, and low re ectance variants (high re ectace being paired with low absorptance etc.).

random. Further discussion of these questions is defemetie The canopy model was congured to calculate in 16

Discussion but the key point is that the speci cation of thisspectral bands of 20nm width over the range 400-720 nm

variation (Figure 2 must be borne in mind when interpreting and all re ectances were resampled to these bands. The

the results. spectral re ectance properties dfhalassiaand Syringodium
The re ectance of the underlying sand was the same as thatre dominated by chlorophyla and b therefore no species-

used inHedley et al. (2015)being a typical calcium carbonate dependent ne scale spectral features are lost by this process

sand re ectance spectra with increasing re ectance in thé re (Figure 2).

to a maximum of about 40%edley et al., 20)5Note that in

Hedley et al. (201%he leaf re ectances were modi ed to include 10P Of Water Column Re ectance Model

a component of sand re ectance to account for the observatior] e next step was to develop a model of top of water column

that in some spars€halassiaanopies there was sediment on thef€ ectance that was fast enough in application to be used for

leaves, that term was not included here. image analysis. For each of the three canopy species structures
To factor in variations due to canopy BRDF (Bi-directional M0no speci cThalassiaand Syringodiumand the 50:50 mix, the

Re ectance Distribution Function) with repeat runs canopies® ectance at each wavelength was tted to an exponential elod

were illuminated from two solar zenith angles, 2énd 56, of the form,

by sky radiance distributions computed by libRadtraiaf/er

and Igylling, 200§, and at three dgpths, 15 10m W"??/h the R /DA.Jexp ko[ LALCB./C+ [ (1)

directional light eld at depth computed by PlanarRadrhese Where the A(l), k(I), and B(l ) values were deduced by

factors are discussed in more detaillitedley et al. (2015)n regression over all the canopy model results for each cangay ty

the incorporation of the water column to the image analysisan exponential decrease in re ectance with LAl was shown to

algorithm by necessity the top of canopy re ectance is com®d  \york well in the previous studyHedley et al., 20)5The term

Lambertian. Hedley et al. (2015howed this simplication . ) represents a set of spectra, which are the residual di erences

was insigni cant in_comparison to other factors but the perween the regression model and the actual spectra, largely d

propagation of the BRDF related uncertainty is retained fOkg the factors that introduce variation. It is assumed tht) can

completeness. be treated as random since we are not interested to dedutmesac
such as canopy position. A model for the range of magnitude and
Lwww.planarrad.com shape offl ) is established by principle components analysis and

Frontiers in Marine Science | www.frontiersin.org 5 November 2017 | Volume 4 | Article 362



Hedley et al. Remote Sensing of Seagrasses

K1) is reduced to a wavelength independent single parametere deduced. Sincetype> in Equation (3) is not a continuous
e1, which ranges from 0 to 1Hedley et al., 20)5A check is parameter, for inversion three best-t solutions are fourmt f
performed that the full model, including the component captiire <type> D 0, 1, 2, and the overall best tis considered the optimal
by e can replicate all the top of canopy spectra to withinsolution and determines canopy composition type. The possible
acceptable accurackigure 3). On this basis one error term was range of the parameter values for all inversions in this stwdye
judged su cient, so top of canopy spectral re ectance become# [0, 0.2];G [0, 0.5]; X [0, 0.05]; H [0, 20]; LAI [0, 6];160, 1]
a function of species composition (canopy type), leaf area indekTable 2. The possible canopy type was in some cases restricted,
and the random error term drawn from a uniform distributiorfo or all three ofThalassiaSyringodiumpr 50:50 mix were used.
Oto1l. For further details of what underlies Equation (3) $é=lley et al.
(2009, 2015)
R. / f type,LAl e, 2 In the sensitivity and image analyses, Equation (3) was
evaluated at a wavelength resolution corresponding to aetubs
This expression was embedded intee et al.' 199§ 1999  of the bands of the PRISM hyperspectral data, speci cally 107
semi-analytical model for shallow water remote sensinqdit  bands with centers from 410 to 710 nm. The canopy model results
parameter of Lee et al.'s model is bottom spectral re ectancend other spectrally tabulated coe cient data were resampted t
R('), so using Equation (2) this input can be eliminated and ahese wavelengths by linear interpolation. Local optima i th

function of the following form implemented, inversion were avoided by repeating each inversion ve times
with a random parameter start point, and the best matching
Rs. /' f P,GXH, type,LAl e, (3)  solution of the ve taken.

where the remote sensing re ectandgrs( ), at wavelength Sensitivity Analysis

is calculated dependent on the amount of phytoplankt®), ( The model for remote sensing re ectance (Equation 3) was
dissolved organic matterq), backscatterX), depth H), and  appjlied in a sensitivity analysis to deduce the fundamental
bottom re ectanceR(l ). LAI, <type>, and e represent the ncertainty, which occurs when two di erent physical situatio
canopy, where: type> is a categorical parameter (integer) takingjead to the same remote sensing re ectance within a tolerance
the value 0, 1, or 2 fofhalassiaSyringodiumer mixed canopy  that is negligible in practical terms. In other words, spedra
type respectively. This model can be used in both forwardg ¢jose that they cannot be reliably di erentiated. The mode
mode, to estimate the remote sensing re ectance for a speci fycluded sources of variation in spectra from components ef th
situation represented by the input parameters, or in inverseeno system up to the top of the water column, with the intention
using a successive approximation technique such as Levenbefgat it would be applied to atmospheric and glint corrected
Marquardt (Volfe, 197§, where the input parameters that give jmagery. Optical processes that occur above the water column
the best least-squares match to a given remote sensinga®ee  hat cause pixel-to-pixel variation were outside the scope ef th

model and are e ectively noise. In this context the fundamental
uncertainty can be deduced by noise perturbed self-inversfon
the model. i.e., a speci ¢ set of parameters are used to model
remote sensing re ectance from Equation (3), a random noise
term is added on, then the model is inverted to see if the input
parameters can be recovered. The variability in the recavere
parameters is the fundamental uncertainty of the model in the
context of the noise. In the sensitivity analysis we used a st
correlated noise modeHgdley et al., 2012a; Garcia et al., 2014
based on the covariance matrix over a deep water area of the
Florida Bay PRISM imagery (see next section). Being empyrical
derived, the covariance matrix captures all sources of pxel t
pixel variation that occur over the deep water area, inclgdin
both environmental e ects and instrument noise. A spectrally
correlated model is used because a large part of the noise is
residual surface glint, even after images have been glintciad
(Kay et al., 2009 and so is not independently random in each
band.

The model of Equation (3) was used to randomly generate
spectral remote sensing re ectances with parameters beegrir
from uniform distributions over the ranges iffable 2. Depth
FIGURE 3 | The ve Syringodiumdominated locations (S1-S5) and three ranged from 0 to 10 m, LAI from O to 5. Five separate analyses
Th?'f‘SSiad"lm‘”"’t‘;d :Omc:‘fnfo(gjc'zg)u";:e"ﬁs ‘hfif‘ S:t;;’z: i‘“‘é detl;th data were conducted, three where canopy type was xed as only
‘E’Z'r';;e";irgpoaccz Agiency? P g Sentinel-2A datarbm e one of the basic classeShalassia Syringodium,or a 50:50

mixture, one where canopy type could be one of eiffiealassia
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TABLE 2 | Sensitivity analysis design showing range of parameters asl for forward modeling and for inversion.

Forward modeling Inversion
Analysis P G X H LAI <type> eq P G X H LAI <type> e)
Thal. 0.03 0.05 0.01 0-10 0-5 1 0-1 0-0.2 0-0.5 0-0.05 0-20 0-6 1 0-1
Sy. 2 2
50% Mixed 3 3
Thal. & Sy. 1,2 1,2
All 3 1,2,3 1,2,3

These inversion parameters were also used for the image analysi€anopy type <type> corresponds to: 1, Thalassia; 2, Syringodium; 3, 50% mixed by LAI.

and Syringodium and one where each modeled spectra could A number of ightlines were available, some of which covered
arise from any of the three classes. The idea was to simulasées at which canopy composition, LAI, and depth had been
varying degrees of canopy composition changes from pixel teecorded co-incident with GPS data (seedley et al., 2015
pixel, and investigate the consequences of introducing jpano for methods). The data included areas that were dominated by
type variability. All ve analyses were performed three timesThalassiaor Syringodium typically located ocean side or bay
(1) using results with leaf level re ectance variatidrigure 2);  side respectivelyr{gure 3). The analysis utilized eight locations
(2) using only canopies modeled with no leaf level variatiorfrom three ight lines that covered thén-situ data locations,
in re ectance and absorptance: using the medium re ectancend varied in pixel size from 1 to 2m. Five locations (S1-S5)
and absorptance (middle lines iRigure 2); and (3) using the wereSyringodiumdominated (close to monospeci c) and three
canopy re ectances directly from the 3D canopy model, hencéT1-T3) where Thalassiadominated. Each location contained
bypassing the simplied re ectance model (Equation 1) andbetween two and 1ih-situ data points of LAl determinations
using more “realistic” canopy re ectances in the forward nrebd based on 20 20 cm quadrats in transects spaced 2m apart.
while retaining the simpli ed model in the inversion. The aim In total 42 data points were available however the seagrass
was to understand the consequences of introducing leaf levbeds were patchy and in some cases visual inspection indicated
variation to the fundamental uncertainty, and also to werif ~ that the location of the data in the imagery was only reliable
the performance of the simpli ed canopy model against the 3Dto within a few meters. For this reason precise image to data
canopy model which it is based. For the forward modeling theegistration of the 42 individual points was not possible ahd t
water optical properties were xed at the values showmable 2  data was processed as grouped into the eight locations. At each
This is equivalent to assuming an area of spatially homoggnoudocation the mean and standard deviation of LAl estimatesrr
water optical properties. 4-pixel window ( 4-8 m dependent on pixel size) around the
For each analysis, 15 in all, 2,500 random spectra werdata points was taken, and compared to the mean and standard

generated by the forward model, random noise was addedeviation of thein-situ data points at that location. Depth data
on and then the inversion model was applied to attempt towas also available for each of the eight locations; this ssaswed
recover the input parameters. The resulting dataset fa@litain  constant at each location.
investigation into the various sensitivities of the modabas Parameterization of the model for image processing was the
presented in the Results and Discussion section. same as described in the sensitivity analysis, inversiogesas

in Table 2and with all three bottom composition types included.

A deep water area at the end of the ight line containing
Image Data Analysis the Thalassiadominated canopies was used to characterize the

The inversion model was applied to hyperspectral airbom@bove-surface noise covariance matrix (the same noisexveeri

imagery acquired by the Portable Remote Imaging Spectromettifed in the sensitivity analysis), the other ight line didtriave
(PRISM) instrument [louroulis et al., 201¢in Florida Bay a suitable deep water area for noise assessment, so the saree ab

January 2014[ierssen et al., 20)5using 107 of the PRISM _surfac_e noise was assumed. For _each pixel 20 noise perturbed
bands from 410 to 710 nm. Details of the imagery pre-processinlg/ersions were performed to provide the mean results and 90%
are given inHedley et al. (2015)but in short this consisted N dence intervals for the parameters of interest, in parta
of: atmospheric correction and conversion Rs(l ) using a LAl and depth.
modi ed version of the ATREM radiative transfer modebéo
and Davis, 1997 per-pixel sun-glint correction by use of RESULTS AND DISCUSSION
the Rayleigh-corrected re ectance at 980nm; and a vicariou . . |
calibration adjustment based on above-water spectral taeze ~ Variation in Modeled Top of Canopy
measurements taken with an ASD FieldSpec 4 co-incidentalle ectance
with image acquisitionDierssen et al., 20).0The imagery is at The leaf level reectance measurements dfhalassia
1 m resolution. The above-surface solar zenith angle w&®  and Syringodium (Figure 2) were consistent with those
at the time of acquisition. measured by others for those species and for other seagrasses
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(Luning and Dring, 1985; Zimmerman, 2003; Runcie andFigure 2). This has a consequence for the variation in the
Durako, 2004; Enriquez, 2005; Thorhaug et al., 2007; Stongh top of canopy re ectanceRigure 4). For Thalassiaat an LAl
2009 although our re ectances tended to be higher at the pealof 3 the variation in re ectance at 630nm was around three
of 550 nm. Consistent witlenriquez (2005and Thorhaug et al.  times greater when leaf level variation is includ&@y(re 4Bvs.
(2007) the spectral shapes of the leaf re ectanceTbhlassia Figure 4A), whereas foSyringodiunthe variation in re ectance
and Syringodiumwere almost identical to each other and thewas relatively una ected by the introduction of leaf levelisace
re ectance ofSyringodiumat 550 nm was slightly higher than (Figure 4D vs. Figure 4C). At a given LAI the “base level”
ThalassigFigure 2). variation induced by variation in canopy structure and positio
The rst question of interest in this study is how the was similar for Thalassiaand Syringodium(Figures 4A,Q; a
sources of variation in the 3D canopy model a ected the topsmall level of variation in leaf optical properties is negligibi
of canopy re ectances folrhalassiaand Syringodium and in  comparison Figure 4D) but clearly above a certain threshold of
particular the relative contribution of variation of leafviel leaf level variation the variation in canopy re ectance bees
re ectance. The input data on re ectance and absorptance ofmuch greater Figure 4Q). In our data Syringodiumwas below
Thalassieand Syringodiumeaves contains a wider variation for this threshold andlhalassiavas above it. Whether this level of
Thalassiathan Syringodium especially in terms of absorptance variation is appropriate for the spatial scale of the remote sensi

FIGURE 4 | Top of canopy (TOC) re ectance at 630 nm for modeledA,B) Thalassiaand (C,D) Syringodiumcanopies under all treatments but differentiated byA,C)
medium leaf re ectances only and(B,D) all three leaf re ectance and absorptance treatments.
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analysis (1-2 m pixels) remains unknown, as the data were n@apability for discrimination using all the spectral bands caty

collected with this objective in mind, this will be discussai@r.  be greater, but water column variations and above surfa@geno
will compromise that ability.

Spectral Separability in Top of Canopy

Re ectance Simpli ed Model for Top of Canopy

Given the level of variation introduced by canopy position,Re ectance
structure, and leaf level variationsi§ure 4) the next questionis The next set of results veri ed that the simpli ed model forgo
how much spectral separability for determining LAI or betweenof canopy re ectance (Equation 1) for each canopy composition
canopy compositions ofhalassieand Syringodiuntemained in  adequately captured the variations previously discusse@. Th
the top of canopy re ectances? While this will be answered morguestion is how much is “lost” going from the 3D model
comprehensively by the sensitivity analysis an initial beattib ~ re ectances to the simpli cation of Equation (1). This is also
plot for 450 and 550 nm for all of the modeled canopy re ectanceshecked later in the sensitivity analysis, but the rst exion
indicates that separability in the model data is possibigre 5. is to consider the magnitude of the residual spectra betwhen t
Considering LAl rst (Figure 5B) there was a clear trend of 3D canopy model re ectances and those that can be produced
darkening in both bands where LAI graduates across the pldty the simpli ed model Figure 6). In all cases the spread of the
area. Despite a few isolated places where, for example, LAlsreSiduals was very small compared to the range of re ectances
5 were mixed with LAls of 3, there is a monotonic trend in captured. For wavelengths lower than 700 nm, over all six isode
LAl in both bands up to LAIs of around 4. This is consistent 70% of the 90% con dence intervals on the residuals were less
with the previousThalassiaonly model Hedley et al., 20)%and  than 5% of the re ectance range, and nowhere were the rekidua
suggests the introduction @yringodiundoes not compromise 90% con dence intervals greater than 10% of the re ectance
this capability. range. Residual ranges greater than 5% of the re ectance only
The ability to spectrally discriminate species in the modeledccur when leaf level optical variation is introduced. This
top of canopy re ectances is less clebigure 5A). Syringodium indicates that leaf level optical variation does introducerént
was distributed in the upper range of the variation with respectmodes of variation that can't be captured by a single vanmtio
to re ectance at 550 nm, in part at least because leaf re exgtan term (e, section Top of Water Column Re ectance Model). But
was generally higher at 550 nnfrigure 2), but still overlaps since the e ect is small a single error term was retained fas th
with Thalassiain the two-band space of 450 and 550 nm. Atstudy.
any specic LAI the species were separable by the ratio of
re ectance at 550-450 nnF{gure 50), but for ratio values less Sensitivity Analysis—Bathymetry
than around eight either species could be present but witihe sensitivity analysis indicated that the fundamental
di erent LAls. There is a region on the left dfigure 5SAwhere uncertainty for bathymetry was very low under all treatment
only Syringodiunoccurs, corresponding to an LAI greater than (Figure 7). Even for the treatment that included the most
3 (c.f.Figure 5B), this corresponds to re ectance ratios greatersources of variation, including all three canopy composgion
than 8, where onlySyringodiumoccurs inFigure 5C In this  of Thalassia Syringodiumand 50% mixtures, 90% con dence
regionSyringodiuntould be distinguished frofihalassiantop  intervals on bathymetry retrieval were better thanl m at
of canopy re ectance using only the bands at 450 and 550 nml.0 m depth Figure 7J. For the other treatments the con dence
The basis of this is that in our data at 550 r8gringodiumeaves intervals on bathymetry retrieval mirrored the amount of
were slightly brighter thaThalassiao an extent that is beyond variation included in the model; the con dence intervalsr fo
the incorporated variation, but at 450 nm they were similar.canopy treatments of single composition types with no leaf

FIGURE 5 | Distribution of top of canopy (TOC) re ectance for all modelé Thalassiaand Syringodiumcanopies with 26 solar zenith angle, in two band space: 450
and 550 nm. (A) Distribution by species,(B) distribution color coded by LAI,(C) band ratio of re ectance at 550—-450 nm, as a function of LAI. No¢ that all points are
plotted in a random order so the dominance of a color in partiglar area does not arise simply because other points are obsced.
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FIGURE 6 | Magnitude of discarded residuals for each of the simpli ed caopy models for (A,B) Thalassia (C,D) Syringodium (E,F) 50% mixed canopies of
Thalassiaand Syringodium and for (A,C,E) canopies where leaf re ectance is xed, (B,D,F) variable leaf re ectance. The upper region of each plot showshe full
range of re ectances from all treatments in the 3D canopy modk the lower line shows the magnitude of the discarded residal error when the model is simpli ed, in
terms of 100, 95, and 75% of the inputs, i.e., 75% of the residals lie with the bounds of the 75% shaded region.

level variation were particularly narrowrigures 7A,C,B. That  result is as expected. What is important here is that introdgci
bathymetry is a robust result under physics based inversiodi erent canopy compositions and leaf level optical variation
approaches is well-establishebefker et al., 200)1and this made very little di erence to the fundamental uncertainty in
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FIGURE 7 | Sensitivity analysis results for bathymetry. Dots are 2,80noise-perturbed self-inversion results, lines are mean®s6 con dence intervals binned in steps
of 0.5m. Treatments are(A—F) single benthic types ofThalassia Syringodiumand 50% mixed canopies, plus(G—J) models with multiple bottom types. Right and left
columns are with and without variation in leaf re ectance.
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bathymetry. However, being an estimate of the uncertairgynf  to accurately recover the canopy composition type 100% of
self-inversion of the model this is an upper bound on what couldhe time Figure 9), hence even including low LAI conditions
be expected in a real application. The possibility of errors irthat Figure 5indicated might be inseparable. Therefore, despite

image pre-processing is neglected, for example. including above surface noise, the top of canopy re ectanersw
o _ spectrally separable to a much greater extent than implied by the
Sensitivity Analysis—Leaf Area Index two-band analysis oFigure 5. This is partly a consequence of

Leaf area index was a less robust result than bathymetihe simpli ed canopy re ectance model, which reduces vaaati
(Figure 8. The condence intervals for LAl retrieval are by multiple factors into a single degree of freedom. However,
relatively large, especially for LAIs greater than 2. Thishis issue is not large, when using the original 3D canopy model
corresponds to the increasing saturation of the LAl e ect onre ectances in the forward model, accuracy in compositiopety

re ectance as canopy re ectance becomes less, beyond @ncertéor depths less than 0.5m is in the range 60—-80% for most
LAI no further darkening can occur and approaching this limit treatments Figure 9), but by a depth of 4m the ability to
uncertainties become higlFigure 5 (Knyazikhin et al., 1993  distinguish canopy type has reduced to around 50-70% and any
In the inversion parameter limitsTable 2 the upper limitonthe  artefactual advantage in using the simpli ed canopy forward
LAI con dence interval is capped at 6 and this explains why themodel is lost. This provides an alternative estimate of thust’c
upper con dence interval curves toward the horizontal for hig of the simplied canopy model: At a depth of 4 meters the
LAls (Figure 8). The upper limit acts to reduce the uncertainty above surface noise in relation to the benthic “signal” weesaly
and is akin to including the prioriinformation that LAls greater greater than what was lost in simplifying the canopy model.

than 6 cannot occur. Including priori limits or probabilities is Ability to determine canopy composition decreases with
useful for reducing uncertainty in inversion method$af and increasing depth Kigure 9. For canopies that can be either
Guillaume, 201pbut is unsuitable if anomalies are of interest Thalassiar Syringodiun{Figures 9A,B a random choice would

or the bounds are too restrictive. Other seagrass specigs sume correct 50% of the time, so at 10m depth separability
asPosidonia sinuosand Posidonia oceaniozan achieve much of 60% indicates the ability to determine species is almost
higher LAls (e.g.7 8 reported inCollier et al., 20067and>12 completely lost. Likewise for three bottom compositions of
reported inOlesen et al., 2002espectively) and in that case it Thalassia Syringodium or mixed canopies 40% accuracy at
would be preferable that the uncertainty accurately re ehts. 10miis close to a random choice.

Leaf area index was also more sensitive to the speci c canopy It might be expected that the ability to determine species
composition treatment or inclusion of leaf level variatidmyt ~ would increase with LAI, since the “signal” of the species
not exceptionally so and without any clear patteffigure 8.  would be expected to increase with leaf area. This was true
Introducing leaf level optical variation in general increds only for treatments that included leaf level optical vaidat
uncertainty in LAl retrievals, as expected, but the e ectand the e ect was smallRigures 10B,D. For multiple canopy
was relatively small. Interestingly, without leaf leveliation  types where there was no leaf variation, ability to discriatén
SyringodiumLAl determinations had higher uncertainty than canopy composition actually decreased slightly with LAl
for Thalassia(Figure 8C vs. Figure 8A). This was likely the (Figures 10A,Q. However, these results do not give any strong
result canopy position and structure, the longer and thinnerindication since overall ability to discriminate canopy tyyeas
leaves of Syringodium will have a greater eect on the averaged over all depths from 0 to 10 m, the primary conclusion
apparent areal density as viewed from above, when they assuisalepth was the more signi cant factoFigure 9).

di erent positions. The higher leaf level variation ifhalassia The sensitivity analysis is therefore pessimistic as regards
(Figure 2) more than compensated for this factor and whenthe ability to distinguish betweenhalassieand Syringodiunby

leaf level variation was includetihalassiahad slighter higher remote sensing. These results should be considered upper bound
uncertainty Figures 8B,0. Overall though, all treatments of what is achievable, in the context of what is included ie th
performed similarly, and introducing a model with two speciesmodel. That is, in any application results can only be worse
(Figures 8G,H or two species plus mixtures-igures 81,J did  unless there is some aspect not included in the model that could

not greatly increase the uncertainty in LAI estimation. be leveraged to facilitate species discrimination. In Feoiighy
o _ - Syringodiuntends to occur bay-side where@lsalassias ocean-
Sensitivity Analysis—Canopy Composition side, therefore there could be systematic dierences in wate

Determining the canopy composition type, either monospeci coptical properties co-incident with species that would increase
Thalassiaor Syringodium or between the two monospeci ¢ discrimination. Here, we have only considered clean leawss fr
canopies and 50:50 mixed canopies, would be expected to hayfelarge epiphytesThalassideaves have a longer life span than
high uncertainty since the spectral shapes Tdfalassiaand  Syringodium which facilitates the formation of more complex
Syringodiunteaf optical properties are almost identiceidure 2, epiphyte communities on the leaves. The dominant epiphyte taxa
and Thorhaug et al., 2007 However, as previously mentioned, are calcifying red coralline algae, although foraminifeliatoms,

in our model a degree of species separability at the top aind other small calci ers have also been report€mi(ett and
canopy exists because tByringodiumwas relatively brighter Jones, 2007 Epiphyte cover is greatest at the apical segments
than Thalassiaat 550 nm Figure 2). The sensitivity analysis of Thalassialeaves, since these are the oldest part of the leaf.
also indicates some capability for species discriminatiorfiact Being located at the top of the canopy there is good potential
for depths less than 0.5m the self-inversion analysis was allar epiphytes to contribute to the re ectance. On the other dan

Frontiers in Marine Science | www.frontiersin.org 12 November 2017 | Volume 4 | Article 362



Hedley et al. Remote Sensing of Seagrasses

FIGURE 8 | Sensitivity analysis results for leaf area index (LAI). Datee 2,500 noise-perturbed self-inversion results, linesra mean 90% con dence intervals binned
in steps of 0.25 in LAI. Treatments ar§A—F) single benthic types ofThalassia Syringodiumand 50% mixed canopies, plus(G-J) models with multiple bottom types.
Right and left columns are with and without variation in leak ectance.
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FIGURE 9 | Sensitivity analysis results for the accuracy of canopy coposition
type determination as function of depth. Each dot is the ovexll accuracy from
the uncertainty propagation (20 repeats) of each of the 2,30 noise-perturbed
self-inversions. Dark lines are the mean accuracy binned steps of 0.5m.
Thin lines are the mean accuracy when input bottom re ectance are drawn
directly from the canopy model results. Treatments includéA,B) the model of
two bottom types and (C,D) three bottom types. Each is repeated(B,D) with
and (A,C) without leaf level variance.

FIGURE 10 | Sensitivity analysis results for the accuracy of canopy
composition type determination as function of leaf area inex (LAl). Each dot is
the overall accuracy from the uncertainty propagation (20epeats) of each of
the 2,500 noise-perturbed self-inversions. Dark lines arthe mean accuracy
binned in steps of 0.25 in LAI. Thin lines are the mean accuracyhen input
bottom re ectances are drawn directly from the canopy model esults.
Treatments include(A,B) the model of two bottom types and (C,D) three
bottom types. Each is repeated(B,D) with and (A,C) without leaf level

variance.

red wavelengths, where coralline algae are spectrally distin
have low penetration in water so any discrimination advastaga y-intercept of 1.54 and slope of 0.4Bigure 12B. However,
may be limited to the shallowest canopies. The situation wilit is clear that the method identi es areas of zero LAI very
also vary between canopies since dependent on conditiongell (Figure 11) but there is noin situ data at zero LAI to
some canopies are relatively free of epiphytes and the epiphytepresent this. Acknowledging this capability by constragnin
community follows a progressive process of organization adipl the regression to have an intercept at zero gives%af 0.86
with leaf age Cebrian et al., 1999Understanding the epiphyte and a slope of 1.01F{gure 12B). This would seem a more
contribution for the purposes of optical modeling is thereforesensible result given visual interpretationfifure 11: zero LAl
a complicated task, but these kind of co-incident factorsldou areas are not identifed as LAl of 1.54. In general the high
explain the relatively reasonable performance of classooat variation exhibited by then situ LAI point data at a scale of
techniques applied to multispectral dath(inn et al., 2008 2m (the transect sampling distance at each location) is clearly a
confounding factor for validation of a remote sensing anialyié
Image Data Analysis places a very high demand on the geo-correction of the imagery
Visually, LAI results from the hyperspectral imagery appearednd accuracy of the GPS system. Tihesitu data used here
reasonable over both thEhalassiaand Syringodiundominated was not collected with this study in mind, for future studies
areas Figure 11). Sand areas were identi ed as LAI close toplacing benthic markers that can be identi ed in the imagery
zero, and denser seagrass areas, especially Syrergodium may be a better solutioi{umby et al., 200y Nevertheless, both
dominated locations, contained the full range of LAIs up to 5visually and in comparison to the available dafagures 11 12)
or more, which was the limit of discrimination predicted by LAI estimations from the image data analysis appear reasgnabl
the sensitivity analysisF{gure 8). The algorithm output did accurate.
highlight some artifacts in the source imagery such as doadrt Depths at the eight locations ranged froml.5m to 8 m,
line (Figure 11, left LAl image) presumably corresponding to depth estimates from the inversion model agreed well in génera
detector anomaly such as dust contamination. Image-ddrivebut there was a dependency on LAfigure 13. All locations
LAl corresponded well toin situ data in terms of both except T1 were highly heterogeneous in terms of canopy density,
area-averaged LAl and standard deviation at each locatioto generaté=igure 13the mean estimated depth at 5 pixels with
(Figure 12A). Linear regression of the area-averaged estimatelatively low LAI within an approximate 20 m radius were taken
LAls against thein situ data yielded arr? of only 0.32 with and likewise depth estimates from pixels with relatively high
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FIGURE 11 | Application of inversion model to hyperspectral PRISM imagg in (left) aThalassiadominated area (T2 and T3) and (right) 8yringodiumdominated area
(S1). LAl image is from model containing all bottom composins, (a—d) show spectral matches for models constrained toThalassiaor Syringodiumonly.
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FIGURE 12 | (A) Leaf area index as estimated from imagery compared tin-situ data, for the ve sites dominated by Syringodium (S1-S5) and the three byThalassia
(T1-T3). Bars show mean and standard deviation fan-situ data points and for a 4-pixel window around those points. Thenumber of pixels contributing to each bar
varies from 71 to 170. The individual data points at each lodéon are plotted to show the variation that exists at each loation. (B) Scatterplot of LAls fromin-situ data
and 4-pixel window imagery estimates, i.e., the same inforiation as in the bars in(A).

LAI within that area.Figure 13 therefore gives an indication exceptions occurred on or around the edges of sand patches
of the e ect of LAl on depth estimation at each location. A where LAl was close to zero so canopy composition is irrelevant
regression plot using both low and high LAl resulisdure 138 The sensitivity analysis suggested that discriminationpefcges
gave anr? of 0.94 and slope of 1.10. Clearly this is a goodvould be subject to high uncertaintyFigure 9, but that one
result but the number of data points is too low to make anybottom type is systematically chosen in all cases indicatessae
strong conclusions. It might be expected that high LAI, givin of the radiometric alignment of the model with the image pixel
rise to darker pixels, would cause depth over-estimationebwl re ectances, since the expected outcome under high unceytai
for most cases over low LAI areas (typically bare sand) deptivould be random bottom composition.
estimates were quite accurate while for high LAl depth was
over-estimated Kigure 13A S1, S4, T2, T3, anfigure 138.  Sensitivity Analysis vs. Image Data Results
However, the pattern was not always consistent, in fact th@/hile overall the results for LAl and depth are reasonable, a
highest LAl areas (S2, S3, LAl greater than 5) gave good depfdaw discrepancies have arisen between the performance medict
estimates. It seems that intermediate LAls give rise todhgelst by the sensitivity analysis and the performance demonstrated
potential for depth over-estimation. The largest depth ermwese by application to image data. The sensitivity analysis and
greater than the uncertainty in depth estimation predictediy  uncertainty propagation are based on the assumption that the
sensitivity analysis over all LAIFigure 7J) and the uncertainty forward model is (1) radiometrically aligned with the image
propagation (error bars irFigure 13. The sensitivity analysis re ectances, i.e., ideally both the model is accurate aedrttage
of Figure 7 covers LAIs from 0 to 5, but if the analysis is data is radiometrically accurate, or at least they are syieally
restricted to LAIs from 3 to 4 the plots appear almost identicacomparable; and (2) that the model incorporates all possible
and the depth uncertainty is still only around1m at 10m sources of variation that could occur over the application area.
depth. In comparison at S1 an LAI of 3 gave rise to error off either condition is not met, then the behavior when applying
C1.5m in a depth of 2.4m. The true depth at location S1 lieshe model to the image data will lead to results outside thepsco
outside the uncertainty estimates for the high LAI pixels @od of the sensitivity analysis.
points to either an omission from the model or a radiometric  The spectral matches achieved were in general very good
discrepancy between the model and the image data. In othgFigures 11a—g. Over either the Thalassiaor Syringodium
words, the spectral re ectance from the image data does rot lidominated sites when the model was constrained to only allow
within the possibilities that can be produced for a depth of 2.4 none composition type, then eitheFhalassiaor Syringodium
from the forward model. It is worth noting that the parameters canopies were capable of generating spectra that matched
for the optical properties of the water columR, G, and X, are  the overall shape of the image re ectances, and which were
not estimated as their minimal or maximal valué&ble 2 and  virtually indistinguishable from each otheFigures 11a—y. It
so are not unduly constraining the inversion. is therefore not surprisind halassisand Syringodiuncould not
With respect to canopy composition, model inversionbe discriminated in the image data, any spectral di erence in
uniformly converged on a solution for monospecithalassia the forward model due to canopy composition was negligible
canopies. Even over tl&yringodiundominated sitesKigure 11,  in comparison to the residual t between the model and image
right, S1) the model almost never selec&dingodiuntanopies data. One reason that thEhalassiacomposition is preferentially
or a 50:50 mix as giving the best spectral match. The onlgelected may be that thEhalassiacanopy model contains more
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FIGURE 13 | (A) Depth estimates for the ve sites dominated bySyringodium (S1-S5) and the three byThalassia(T1-T3). Low LAl and high LAl are each averages
over 5 pixels within an approximate 20 m radius of the locativ center, selected as examples of low and high LAI pixels. Eor bars are the mean of the upper and
lower 90% con dence intervals from the uncertainty propagabn. (B) Scatterplot of actual depth against estimated depths overdw and high LAl locations, i.e. the
same data as(A).

leaf level optical variation that do&yyringodium(Figure 2) so  PRISM instrument is more than adequate for this application. By
the greater degree of freedom permits a marginally closecimat the sensitivity analysis parameterizatidrable 2 the re ectance
than is possible with th&yringodiummodel. This implies that change at 550 nm to detect 1m change in depth at a depth
incorporating uncertainty could bias the inversion when theof 10m over a canopy of LAl 4 is 0.8% of the re ectance
model and re ectances aren't exactly radiometricallyradid, and for bare sand at zero depth (the brightest target required for
this may be a limitation of the approach. How much variation subsurface applications). This dynamic range would be covered
is the correct amount to include in the canopy modeling is alsdy a signal to noise ratio (SNR) of 120 and 8-bit digitization,
di cult to assess. Strictly it should be the pixel-to-pixeln@ion  while PRISM is 14-bit with an SNR of 200 per band, and much
at the scale of image pixels within the spatial domain of thereater when bands are combined as they are here (sinceg &in
application, but to quantify this is unrealistic. A better appoh  spectrum is a e ectively a kind of band-averagingJquroulis
may be to standardize the amount of optical variation betweert al., 201}t So for hyperspectral imagers such as PRISM the
species, as this might remove the bias or at least reveal thietex radiometric limiting factors, especially for physics basedagiqu
by which the inversion was biased by di erences in uncertaint applications, lie not in the instrument speci cations but ingh

The spectral matches from the model at t&gringodium data processing (see al§&modman et al., 2008; Hedley et al.,
dominated site S1Higures11c,dl do not fully capture the 2012f). Since here discrepancies between the sensitivity analyses
chlorophyll absorption features in wavelengths from 570 nmand practical performance appear to be due to radiometric
upward (eery et al, 1997 The model is a smoother dierences between the model and data, this suggests future
approximation because the 3D canopy model operates abodel based sensitivity analyses should include a term for
20nm resolution. Improving the spectral resolution of the“radiometric discrepancy.” Thatis, regardless of the cafisach
canopy model may help match these chlorophyll features and discrepancy (atmospheric correction issues, model inaa®qu
disambiguate increased LAI from increased depth, althobgh t etc.) it seems overly optimistic that such a term should be
issue primarily a icted the deeper site where these featumes a zero. The common practice of relying entirely on a sensor
almost absent in the image datBigures 11a,p. These spectral or environmental noise characterizatio®r@ndo et al., 2009;
features are unlikely to assist in species discriminationesthey Hedley et al., 2012b, 2015; Garcia et al., 084not really
are also present in re ectances from the shalldhalassiasite  adequate to predict practical performance.
(T3, data not shown). In particular the shoulder at 570 to 585 n
and re ectance peaks at645nm and 690 are ubiquitous and .. .
arise from features also visible in the leaf level re ectantor  IMplications for Remote Sensing of
both speciesKigure 2). Seagrasses

The ight line over the Syringodiumsite S1 Figures 11c,yl  In this study, the sensitivity analysis suggested the tabit
contained much more spectral noise up to 550nm than fodiscriminate betweei . testudiniumand S. liforme by remote
the Thalassissites Figures 11a,p. However, the band-to-band sensing is at best weak. In a practical application re ectance
noise appears to average out satisfactorily with respect to ttspectra arising from either canopy were virtually identieéth
overall spectral t. The documented signal to noise ratioloét di erences below the accuracy of the radiometric alignment
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of the model with imagery data. The situation with respectwas that variations (uncertainties) were included at allels,
to other species may be betteryfe (2003)indicated that from individual leaf re ectances, through canopy structure
Zostera capricorpPosidonia australimndHalophila ovalisvere  the water column and the air-water interface. The resultsewe
separable in terms of leaf re ectance, but that study did notonsistent with the performance of a previously developed
include other sources of variability at remote sensing escal single species model that lacked leaf re ectance variation
For those species spectral matching may be more e ective (Hedley et al., 2005 LAl estimates were reasonable within
the matching were weighted on wavelength regions in whiclthe limitations of thein situ data available for assessment.
discrimination is possible, but this would be at the cost dfest Depth estimates were in many cases accurate down to 8 m but
factors such as depth determination. increasing LAI tended to cause depth over-estimation, eafigci
On the other hand, a physics-based approach with spectrébr intermediate LAl valuesT. testudiniumandS. liformecould
matching may not be the best way to extract species informatio not be distinguished by remote sensing re ectance alone tdue
Phinn et al. (2008gemonstrated a weak ability to map seagrassheir spectral similarity. Canopies of other seagrass spetgs
species using a classi cation approach on 54-band CASI datze more spectrally distinct, and discrimination could be aided
(Compact Airborne Spectrographic Imager). Of eight classes &y making use of information on ecological zonation, perhaps
canopy composition (including ve species) around three @ass in a Bayesian framework. The presence of epiphytes such as
were identi ed with overall accuracies greater than arodido. encrusting coralline red algae ofhalassialeaves but noton
However, the classi cation applied iRhinn et al. (2008was those ofSyringodiunmay be worth investigating but any spectral
based on top of water column re ectances, so if for exampléeatures will be a small component of the re ectance and may
species were associated with depth then the classi cation camot be detectable at remote sensing scales. Spectral matohing
use this information since it is also contained in the reaete chlorophyll features of the canopy re ectance could be improved
spectra. Classi cation approaches are in general able to usg increasing the spectral resolution of the 3D canopy model.
whatever information is present in the re ectances they aréAlthough this would be computationally expensive and there
presented with, so results can be better but are site-spenidc a is no clear indication from this study that any improvements
contingent on training data being representative of themgite. would result. With respect to environments dominated by
Phinn et al. (2008were able to identify four classes of leafThalassiaand Syringodiuna better algorithm design might be to
projected area with around 50% accuracy in depths to 3 nfocus on LAl and relegate species as a contributor to vaiibil
Direct comparison is di cult but if LAl here is treated as four in canopy structure rather than a remote sensing objective.
classes from 0 to 6 with step 1.5, then 4 of the 8 locationBractical considerations of collecting and aligniimgsitu data
in Figure 12represent correct classi cations (so also 50%), butvith imagery are a major limiting factor in demonstrating the
that includes depths to 8 m and the two deep points are thoseapability of methods, this aspect of the experimental design
with greatest relative error. The performance of the physicsrequires careful consideration in order to advance benthic
based method and the classi cation approach for LAl wouldremote sensing methods.
certainly appear to be comparable, the physics based method isExamination of the sensitivity analysis and model
possibly better but the geolocation iofsitu data in the imagery parameterization highlighted the challenges involved iflyfu
is insu cient conclude this. Empirical regression methodsing  exploiting hyperspectral data using model inversion methods.
band-pair depth invariant indicesMumby et al., 1997 have In particular in the absence of exact radiometric alignment
reported calibration data correlations ofD 0.83 in depths to between model and the hyperspectral imagery, there can be
10 m. However, being a calibration plot the gure fromiumby a complex relationship between uncertainty and the spectral
et al. (1997)their Figure 4) is more directly comparable to the matching process: features with higher uncertainty may peami
sensitivity analyses herdigure 8. Together these underline closer spectral tto “noise” and hence be preferentially ciele.
that the information is present to achieve the LAI accuracySensitivity analyses should be interpreted with caution esinc
predicted by the sensitivity analysis, but practically asiogghat they are always an upper bound on what can be achieved. Here,
information and relating it tan situ data is challenging. The most in practice there was a greater confusion between depth and
successful demonstrable benthic mapping results occurred Al than was predicted by the sensitivity analysis. This sstgge
studies wherén situ data collection was tailored for the objective that future work on predicting remote sensing capability stibul
in mind. In particular, with calibrated visual assessmentmoels  consider a “radiometric discrepancy” term in addition to sen
the in situ LAl estimation is performed in a way that is closer to and environmental noise. While the aim is that such a term
remote sensing, i.e., by visual assessmintnfby et al., 1997; should be zero, in practice, considering the challenges etter
Knudby and Nordlund, 201)] so it is likely that good match in atmospheric and surface re ectance corrections, thatkslyi
between remote sensing amdsitu data can be achieved. an overly optimistic assumption.
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