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The capability for mapping two species of seagrass,Thalassia testudinium and
Syringodium �liforme, by remote sensing using a physics based model inversion method
was investigated. The model was based on a three-dimensional canopy model combined
with a model for the overlying water column. The model included uncertainty propagation
based on variation in leaf re�ectances, canopy structure, water column properties, and
the air-water interface. The uncertainty propagation enabled both a-priori predictive
sensitivity analysis of potential capability and the generation of per-pixel error bars when
applied to imagery. A primary aim of the work was to compare the sensitivity analysis
to results achieved in a practical application using airborne hyperspectral data, to gain
insight on the validity of sensitivity analyses in general.Results showed that while the
sensitivity analysis predicted a weak but positive discrimination capability for species, in
a practical application the relevant spectral differenceswere extremely small compared
to discrepancies in the radiometric alignment of the model with the imagery—even
though this alignment was very good. Complex interactions between spectral matching
and uncertainty propagation also introduced biases. Ability to discriminate LAI was
good, and comparable to previously published methods usingdifferent approaches. The
main limitation in this respect was spatial alignment with the imagery with in situ data,
which was heterogeneous on scales of a few meters. The results provide insight on
the limitations of physics based inversion methods and seagrass mapping in general.
Complex models can degrade unpredictably when radiometricalignment of the model
and imagery is not perfect and incorporating uncertaintiescan have non-intuitive
impacts on method performance. Sensitivity analyses are upper bounds to practical
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capability, incorporating a term for potential systematicerrors in radiometric alignment
may be advisable. WhileT. testudiniumand S. �liforme were too spectrally similar to be
discriminated purely on spectral grounds, mapping of these, and other species may be
achievable by exploiting co-incident factors based on ecological zonation.

Keywords: seagrass, remote sensing, inversion, hyperspect ral, leaf area index, species

INTRODUCTION

Seagrasses are a key biotic component of coastal environments
and provide numerous ecosystem services such as oxygen
production, regulation of water quality, sediment stabilization,
protection from wave energy (Fonesca and Cahalan, 1992),
organic and inorganic carbon sequestration (Enríquez and
Schubert, 2014), and nursery habitats for �sh of commercial
importance (Beck et al., 2001) or that have a role in associated
habitats such as coral reefs (Nagelkerken et al., 2002; Verweij
et al., 2008). Increasingly ecosystem services are recognized to
have real economic value (Costanza et al., 1997) and seagrasses
fall under a number of national and international initiatives
for protection, such as the Water Framework Directive in
Europe (Gobert et al., 2009), the Convention on Biological
Diversity (United Nations, 1992), the Ramsar convention
(Ramsar Convention Secretariat, 2013).

Using satellite or airborne imagery for monitoring and
management of seagrasses is an attractive proposition given their
global and spatial extent, estimated at 177,000 km2 (Green and
Short, 2003). Published demonstrations include estimation of
canopy biophysical parameters such cover, biomass, leaf area
index, and species (Mumby et al., 1997; Phinn et al., 2008;
Knudby and Nordlund, 2011). The majority of approaches
use classi�cation or regression based on spectral re�ectance
in one or more wavelength bands. That these methods can
deduce biophysical parameters indicates that, at least under
some conditions, the information is present in the remote
sensing re�ectance to make these determinations. However,from
empirical techniques it is di�cult to infer the transferability
and general limitations: would the same result be achievable at
another site, for another species, with di�erent depth or water
conditions?

Another approach to benthic mapping by remote sensing
is that of physics-based approaches, which rather than using
in-situ empirical training data, rely on the parameterization of
a physical model for spectral re�ectance as seen by a remote
sensing instrument. The model is then “inverted” by successive
approximation (Lee et al., 1999) or look-up tables (Mobley et al.,
2005) to deduce which biophysical parameter values can produce
the re�ectance in each pixel. The model incorporates a range
of possibilities for bottom type and the optical properties of
the water, this represents what is not known about the site or
can vary from pixel to pixel. These variations can form the
basis for uncertainty propagation, the possibility of multiple
solutions within the bounds of instrument or environmental
noise determines the fundamental limitation of the method
(Hedley et al., 2012b). In addition, the underlying model can
be used for sensitivity analysis before image processing. While

sensitivity analyses and uncertainty propagation are key tools
for predicting capability and informing on sensor design (Lubin
et al., 2001; Hochberg and Atkinson, 2003; Hedley et al., 2012b,
2015; Botha et al., 2013) their results are not often directly
compared to practical image analyses, to determine if the
predictions of the sensitivity analysis are borne out in practice.

Physics-based inversion methods have been applied in
seagrass environments (Dekker et al., 2011; Hedley et al.,
2015) and are in theory more transferable, since they can be
parameterized generically and are not linked to any speci�c
site or imagery. Being based on a physical model rather
than statistical inference, these methods also facilitate greater
understanding of the fundamental limitations and uncertainties.
However, applying physics-based methods presents a di�erent set
of challenges. In particular the input parameters and the model
should encompass all the major sources of variation, otherwise
spectra resulting from those variations may be non-physical from
the point of view of the model, leading to errors in estimations
and under-estimates of the uncertainty. For the same reason,
atmospheric, and water interface corrections (sun-glint) must
be performed with high accuracy (Goodman et al., 2008), any
discrepancies in the radiometry of the imagery with respect to
that of the model will lead to inaccurate results.

In this paper we present a two-species physics-based model for
mapping seagrass species, canopy density (leaf area index, LAI),
and depth. As an advance to previous work (Hedley et al., 2015)
the new model incorporates two species,Thalassia testudinum
and Syringodium �liforme, and incorporates uncertainty in the
leaf re�ectance of both species, in addition to variation in
canopy structure, water optical properties and depth. Here we
describe the application of the model in a sensitivity analysis
and to hyperspectral imagery of Florida Bay. A key aim of
the work was to gain insight into the relationship between the
theoretical and practical method performance, in the contextof
the included uncertainties. For example, does including more
uncertainties lead to an algorithm that has poor discrimination
both theoretically and in practice? Which objectives: depth,
LAI or species; are most compromised by the introduced
uncertainties, and again does the theory (sensitivity analysis)
match the practice (image application)? The results are relevant
for improving the incorporation of uncertainties into physics-
based methods, and for interpreting sensitivity analyses in the
context of practical applications.

In summary the key objectives of the work presented here
were:

1) Develop the conceptual framework for a multi-species model
with variation in leaf re�ectance, canopy structure, depth, and
water optical properties, and parameterize that model.

Frontiers in Marine Science | www.frontiersin.org 2 November 2017 | Volume 4 | Article 362

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Hedley et al. Remote Sensing of Seagrasses

2) Understand which sources of variation and factors are
theoretically limiting in the mapping of species and leaf area
index, with respect to that model.

3) Assess the capability of the method in a �eld test with
hyperspectral airborne imagery.

4) Compare the predicted capability to the actual capability, and
to understand the basis of discrepancies between theoretical
and achievable performance.

5) Draw conclusions on the capability for mapping seagrass
species and leaf area index by remote sensing.

METHODS

Overview
The following sections discuss successive components of the
methods starting with the canopy re�ectance model (Figure 1A);
the above-water re�ectance model which combines the canopy
model and a water column model (Figure 1B); the sensitivity
analysis used to understand the fundamental limitations of
spectral separability, and �nally the image analysis (Figure 1C).
The steps in the development of the physics-based model are
similar to those described inHedley and Enríquez (2010), Hedley
et al. (2015), so here the description is briefer and focuses on the
key di�erences in the current work. The two species considered
are T. testudiniumand S. �liforme, for readability these are
henceforth referred to simply asThalassiaandSyringodium.

Canopy Re�ectance Model
The �rst step was to conduct many runs of a three-dimensional
canopy model (Figure 1) for monospeci�c Thalassia,
Syringodium,and 50:50 mixed canopies in terms of LAI, in
order to establish the distribution of top of canopy spectral
re�ectance as a function of species, LAI, and canopy structure
and position. Seagrass meadows are not monospeci�c in reality
but often eitherThalassiaor Syringodiumcan represent greater
than 70% of the total above-ground biomass of the macro-phyto-
benthic community in Caribbean coastal habitats (Enríquez
and Pantoja-Reyes, 2005). A range of community compositions
are also common, associated with environmental conditions
(Medina-Gómez et al., 2016). By including monospeci�c and
50:50 canopies in the model the idea was to cover the range of
what might occur, with the concept of a mixed canopy included.
The technical details of the model itself are described inHedley
(2008), Hedley and Enríquez (2010), and Hedley et al. (2014,
2015). Table 1gives the full details of the treatments included in
the model.

The factors of canopy structure and position were considered
a source of variation, leaves were modeled as �exible strips
that under simple model of wave motion assume naturalistic
canopy positions, of which four treatments were used, two of
each termed loosely “upright” and “�attened” (Table 1). The
leaves are modeled as re�ecting and transmitting surfaces 0.9
cm wide for Thalassiaand 0.25 cm wide forSyringodium. In
realitySyringodiumleaves are circular in cross-section, however
most previous modeling work and measurements of re�ection
and transmission treatSyringodiumleaves in the same way as
�at leaves (Thorhaug et al., 2007; Stoughton, 2009). The optical

data to model them as circular volumes is not available and
would be di�cult to obtain in practical terms. The canopy model
is also designed such that all leaves originate at the substrate
whereas, unlikeThalassia, Syringodiumhas a short shoot from
which leaves branch (Eiseman, 1980). Since the application
here is remote sensing and not within-canopy light �elds for
photobiology (Hedley et al., 2014) these compromises are most
likely optically insigni�cant in the context of the other factors
such as canopy position (Figure 1), depth, and water column
optical properties.

An important consideration was to incorporate variation
in leaf optical properties, since the previous model (Hedley
et al., 2015) assumed everyThalassia leaf had the same
re�ectance. In reality leaf re�ectance varies at many scales:
along the leaf length, between leaves and between sites (Hedley
and Enríquez, 2010). Using only a single re�ectance and
absorptance spectra for all leaves represents an underestimate
in that component of spectral variation, but how to quantify
the appropriate variation at given spatial scale is not obvious.
In this study each species was represented by three pairs
of re�ectance and absorptance spectra, corresponding to low,
medium and high re�ectance, coupled with high, medium, and
low absorptance (Figure 2). The re�ectance and absorptance
data forSyringodiumand Thalassialeaves were collected using
samples of clean leaves from the Puerto Morelos reef lagoon,
Yucatan, Mexico. Leaf re�ectance spectra were measured using
an Ocean Optics USB2000 spectroradiometer according to the
methods described inVásquez-Elizondo et al. (2017). Re�ection,
RL(l ), was measured with a 2 mm diameter �ber optics placed
over the surface of the sample at an angle of 45� C and a
distance of 5 mm with a Te�on panel as a reference. Di�use
illumination was provided from light re�ected from a semi-
sphere coated with barium oxide (BaO) illuminated was with
a white LED ring (450–650 nm) located around the sample,
plus violet-blue LEDs and halogen lamps, to increase the di�use
illumination below 450 nm and above 650 nm (Vásquez-Elizondo
et al., 2017). Transmission spectra were determined asTL(l )
D 10� D(l ), whereD(l ) denotes absorbance, using a conventional
spectrophotometer (AMINCO DW2, USA) controlled by an
OLIS data collection system equipped with an opal-glass in
front of the detector, following the methodology proposed by
Shibata (1959)and described inEnríquez (2005)and Vásquez-
Elizondo et al. (2017). Absorptance estimations were calculated
as AL(l ) D 1 � TL(l ) � RL(l ). For Syringodium, leaves
were sampled from six sites and the three re�ectance and
absorptance pairs were selected from 193 optical determinations
as representative of the range in the data. ForThalassia
absorptance the model described inHedley and Enríquez (2010)
was used to generate spectral absorptance based on 50, 60,
and 70% PAR absorptance, a typical range as shown in that
paper. Additional re�ectance measurements of leaf samples,
not included in Hedley and Enríquez (2010)were taken to
provide the three re�ectance spectra (Figure 2A). For each
individual modeled top of canopy re�ectance (Table 1) one of
the re�ectance-absorptance pairs was selected for each species.
This means that the spatial scale of the variation that is included
was assumed pixel-to-pixel in a remote sensing context. This
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FIGURE 1 | Overview of seagrass re�ectance model and analysis.(A) Canopies are parameterized by four factors: Composition, leaf area index (LAI), leaf lengths,
and leaf position.(B) A three dimensional canopy model estimates the top of canopyre�ectance over all conditions and the results are reduced toa simpler functional
form that includes the water column.(C) A spectral matching procedure applies the simpli�ed model insensitivity analyses and image processing.

TABLE 1 | Experimental design of model runs for establishing the variation of above canopy diffuse re�ectance with LAI and other factors.

Leaf length LAI Position Sand re�ectance Leaf re�ectance SZ A Depth Random repeats Total

Thal. x 3 x 11 x 4 x 1 x 1 x 2 x 3 x 5 3,960

short
medium
long

Max. � 6.5 2 upright
2 �attened

A random choice
of 1 out of 3 each

time

26�

56�
1 m
5 m
10 m

Sy. x 2 x 9 x 4 x 1 x 1 x 2 x 3 x 5 2,160

short
long

max. � 5.5 2 upright
2 �attened

A random choice
of 1 out of 3 each

time

Mix x 1 x 9 x 4 x 1 x 1 x 2 x 3 x 5 1,080

Thal.
medium
Sy.
short

2 upright
2 �attened

A random choice
of 1 out of 3 each
time for Thal.and

Sy.

Thal, were monospeci�c Thalassia canopies; Sy, Syringodium; and Mix was a mix of Thalassia and Syringodium that is on average 50:50 in terms of LAI. SZA denotes solar zenith angle.
For Thalassia leaf length distributions in terms of mean and standarddeviation were: short 6� 3 cm; medium 12 � 6 cm; long 24 � 12 cm, for Syringodium, short 25� 10 cm; long
50 � 20 cm. Each column shows the number of treatments and the �nal column thenumber of canopy model runs used to characterize the distribution of top of canopy re�ectances.

inclusion of variation in leaf re�ectance is approximate, as
the appropriate variation at a given spatial scale is unknown.
However, to include no variation at all would be the weakest

treatment because it could lead to spectral di�erences between
the species for purely numerical reasons. Two spectra, as
single data points, could have a distinguishing feature at
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FIGURE 2 | Leaf level re�ectances and absorptances as used in the modeling for (A,C) Thalassiaand (B,D) Syringodium. Each plot shows three lines, corresponding
to the high, medium, and low re�ectance variants (high re�ectance being paired with low absorptance etc.).

random. Further discussion of these questions is deferred to the
Discussion but the key point is that the speci�cation of this
variation (Figure 2) must be borne in mind when interpreting
the results.

The re�ectance of the underlying sand was the same as that
used inHedley et al. (2015), being a typical calcium carbonate
sand re�ectance spectra with increasing re�ectance in the red
to a maximum of about 40% (Hedley et al., 2015). Note that in
Hedley et al. (2015)the leaf re�ectances were modi�ed to include
a component of sand re�ectance to account for the observation
that in some sparseThalassiacanopies there was sediment on the
leaves, that term was not included here.

To factor in variations due to canopy BRDF (Bi-directional
Re�ectance Distribution Function) with repeat runs canopies
were illuminated from two solar zenith angles, 26� and 56� ,
by sky radiance distributions computed by libRadtran, (Mayer
and Kylling, 2005), and at three depths, 1, 5, 10 m, with the
directional light �eld at depth computed by PlanarRad1. These
factors are discussed in more detail inHedley et al. (2015). In
the incorporation of the water column to the image analysis
algorithm by necessity the top of canopy re�ectance is considered
Lambertian. Hedley et al. (2015)showed this simpli�cation
was insigni�cant in comparison to other factors but the
propagation of the BRDF related uncertainty is retained for
completeness.

1www.planarrad.com

The canopy model was con�gured to calculate in 16
spectral bands of 20 nm width over the range 400–720 nm
and all re�ectances were resampled to these bands. The
spectral re�ectance properties ofThalassiaand Syringodium
are dominated by chlorophylla and b therefore no species-
dependent �ne scale spectral features are lost by this process
(Figure 2).

Top of Water Column Re�ectance Model
The next step was to develop a model of top of water column
re�ectance that was fast enough in application to be used for
image analysis. For each of the three canopy species structures,
mono speci�cThalassiaandSyringodiumand the 50:50 mix, the
re�ectance at each wavelength was �tted to an exponential model
of the form,

R.� / D A .� / exp
�
� k . � / � LAI

�
C B.� / C +.� / (1)

Where the A(l ), k(l ), and B(l ) values were deduced by
regression over all the canopy model results for each canopy type.
An exponential decrease in re�ectance with LAI was shown to
work well in the previous study (Hedley et al., 2015). The term
+(l ) represents a set of spectra, which are the residual di�erences
between the regression model and the actual spectra, largely due
to the factors that introduce variation. It is assumed that+(l ) can
be treated as random since we are not interested to deduce factors
such as canopy position. A model for the range of magnitude and
shape of+(l ) is established by principle components analysis and
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+(l ) is reduced to a wavelength independent single parameter
e1, which ranges from 0 to 1 (Hedley et al., 2015). A check is
performed that the full model, including the component captured
by e1 can replicate all the top of canopy spectra to within
acceptable accuracy (Figure 3). On this basis one error term was
judged su�cient, so top of canopy spectral re�ectance becomes
a function of species composition (canopy type), leaf area index,
and the random error term drawn from a uniform distribution of
0 to 1.

R.� / � f
�


type
�
, LAI, e1, �

�
(2)

This expression was embedded intoLee et al.'s(1998, 1999)
semi-analytical model for shallow water remote sensing. A input
parameter of Lee et al.'s model is bottom spectral re�ectance,
R(l ), so using Equation (2) this input can be eliminated and a
function of the following form implemented,

Rrs . � / � f
�
P,G,X,H,



type

�
, LAI, e1, �

�
(3)

where the remote sensing re�ectance,Rrs(l ), at wavelengthl
is calculated dependent on the amount of phytoplankton (P),
dissolved organic matter (G), backscatter (X), depth (H), and
bottom re�ectanceR(l ). LAI, < type> , and e1 represent the
canopy, where< type> is a categorical parameter (integer) taking
the value 0, 1, or 2 forThalassia, Syringodium,or mixed canopy
type respectively. This model can be used in both forward
mode, to estimate the remote sensing re�ectance for a speci�c
situation represented by the input parameters, or in inverse mode
using a successive approximation technique such as Levenberg-
Marquardt (Wolfe, 1978), where the input parameters that give
the best least-squares match to a given remote sensing re�ectance

FIGURE 3 | The �ve Syringodiumdominated locations (S1-S5) and three
Thalassiadominated locations (T1-T3) where thein situ LAI and depth data
points were located. Image produced using Sentinel-2A data from the
European Space Agency.

are deduced. Since< type> in Equation (3) is not a continuous
parameter, for inversion three best-�t solutions are found for
< type> D 0, 1, 2, and the overall best �t is considered the optimal
solution and determines canopy composition type. The possible
range of the parameter values for all inversions in this studywere
P [0, 0.2];G [0, 0.5]; X [0, 0.05]; H [0, 20]; LAI [0, 6]; e1[0, 1]
(Table 2). The possible canopy type was in some cases restricted,
or all three ofThalassia, Syringodium,or 50:50 mix were used.
For further details of what underlies Equation (3) seeHedley et al.
(2009, 2015).

In the sensitivity and image analyses, Equation (3) was
evaluated at a wavelength resolution corresponding to a subset
of the bands of the PRISM hyperspectral data, speci�cally 107
bands with centers from 410 to 710 nm. The canopy model results
and other spectrally tabulated coe�cient data were resampled to
these wavelengths by linear interpolation. Local optima in the
inversion were avoided by repeating each inversion �ve times
with a random parameter start point, and the best matching
solution of the �ve taken.

Sensitivity Analysis
The model for remote sensing re�ectance (Equation 3) was
applied in a sensitivity analysis to deduce the fundamental
uncertainty, which occurs when two di�erent physical situations
lead to the same remote sensing re�ectance within a tolerance
that is negligible in practical terms. In other words, spectraare
so close that they cannot be reliably di�erentiated. The model
included sources of variation in spectra from components of the
system up to the top of the water column, with the intention
that it would be applied to atmospheric and glint corrected
imagery. Optical processes that occur above the water column
that cause pixel-to-pixel variation were outside the scope of the
model and are e�ectively noise. In this context the fundamental
uncertainty can be deduced by noise perturbed self-inversionof
the model. i.e., a speci�c set of parameters are used to model
remote sensing re�ectance from Equation (3), a random noise
term is added on, then the model is inverted to see if the input
parameters can be recovered. The variability in the recovered
parameters is the fundamental uncertainty of the model in the
context of the noise. In the sensitivity analysis we used a spectrally
correlated noise model (Hedley et al., 2012a; Garcia et al., 2014)
based on the covariance matrix over a deep water area of the
Florida Bay PRISM imagery (see next section). Being empirically
derived, the covariance matrix captures all sources of pixel to
pixel variation that occur over the deep water area, including
both environmental e�ects and instrument noise. A spectrally
correlated model is used because a large part of the noise is
residual surface glint, even after images have been glint corrected
(Kay et al., 2009), and so is not independently random in each
band.

The model of Equation (3) was used to randomly generate
spectral remote sensing re�ectances with parameters being drawn
from uniform distributions over the ranges inTable 2. Depth
ranged from 0 to 10 m, LAI from 0 to 5. Five separate analyses
were conducted, three where canopy type was �xed as only
one of the basic classes:Thalassia, Syringodium,or a 50:50
mixture, one where canopy type could be one of eitherThalassia
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TABLE 2 | Sensitivity analysis design showing range of parameters used for forward modeling and for inversion.

Forward modeling Inversion

Analysis P G X H LAI < type > e1 P G X H LAI < type > e1

Thal. 0.03 0.05 0.01 0–10 0–5 1 0–1 0–0.2 0–0.5 0–0.05 0–20 0–6 1 0–1

Sy. 2 2

50% Mixed 3 3

Thal.& Sy. 1, 2 1, 2

All 3 1, 2, 3 1, 2, 3

These inversion parameters were also used for the image analysis. Canopy type < type> corresponds to: 1, Thalassia; 2, Syringodium; 3, 50% mixed by LAI.

and Syringodium, and one where each modeled spectra could
arise from any of the three classes. The idea was to simulate
varying degrees of canopy composition changes from pixel to
pixel, and investigate the consequences of introducing canopy
type variability. All �ve analyses were performed three times:
(1) using results with leaf level re�ectance variation (Figure 2);
(2) using only canopies modeled with no leaf level variation
in re�ectance and absorptance: using the medium re�ectance
and absorptance (middle lines inFigure 2); and (3) using the
canopy re�ectances directly from the 3D canopy model, hence
bypassing the simpli�ed re�ectance model (Equation 1) and
using more “realistic” canopy re�ectances in the forward model
while retaining the simpli�ed model in the inversion. The aim
was to understand the consequences of introducing leaf level
variation to the fundamental uncertainty, and also to verify if
the performance of the simpli�ed canopy model against the 3D
canopy model which it is based. For the forward modeling the
water optical properties were �xed at the values shown inTable 2.
This is equivalent to assuming an area of spatially homogenous
water optical properties.

For each analysis, 15 in all, 2,500 random spectra were
generated by the forward model, random noise was added
on and then the inversion model was applied to attempt to
recover the input parameters. The resulting dataset facilitated an
investigation into the various sensitivities of the model and is
presented in the Results and Discussion section.

Image Data Analysis
The inversion model was applied to hyperspectral airborne
imagery acquired by the Portable Remote Imaging Spectrometer
(PRISM) instrument (Mouroulis et al., 2014) in Florida Bay,
January 2014 (Dierssen et al., 2015), using 107 of the PRISM
bands from 410 to 710 nm. Details of the imagery pre-processing
are given inHedley et al. (2015), but in short this consisted
of: atmospheric correction and conversion toRrs(l ) using a
modi�ed version of the ATREM radiative transfer model (Gao
and Davis, 1997); per-pixel sun-glint correction by use of
the Rayleigh-corrected re�ectance at 980 nm; and a vicarious
calibration adjustment based on above-water spectral re�ectance
measurements taken with an ASD FieldSpec 4 co-incidentally
with image acquisition (Dierssen et al., 2010). The imagery is at
� 1 m resolution. The above-surface solar zenith angle was� 30�

at the time of acquisition.

A number of �ight lines were available, some of which covered
sites at which canopy composition, LAI, and depth had been
recorded co-incident with GPS data (seeHedley et al., 2015
for methods). The data included areas that were dominated by
Thalassiaor Syringodium, typically located ocean side or bay
side respectively (Figure 3). The analysis utilized eight locations
from three �ight lines that covered thein-situ data locations,
and varied in pixel size from� 1 to 2 m. Five locations (S1-S5)
wereSyringodiumdominated (close to monospeci�c) and three
(T1-T3) whereThalassiadominated. Each location contained
between two and 12in-situ data points of LAI determinations
based on 20� 20 cm quadrats in transects spaced 2 m apart.
In total 42 data points were available however the seagrass
beds were patchy and in some cases visual inspection indicated
that the location of the data in the imagery was only reliable
to within a few meters. For this reason precise image to data
registration of the 42 individual points was not possible and the
data was processed as grouped into the eight locations. At each
location the mean and standard deviation of LAI estimates from
4-pixel window (� 4–8 m dependent on pixel size) around the
data points was taken, and compared to the mean and standard
deviation of thein-situ data points at that location. Depth data
was also available for each of the eight locations; this was assumed
constant at each location.

Parameterization of the model for image processing was the
same as described in the sensitivity analysis, inversion ranges as
in Table 2and with all three bottom composition types included.
A deep water area at the end of the �ight line containing
the Thalassiadominated canopies was used to characterize the
above-surface noise covariance matrix (the same noise matrix as
used in the sensitivity analysis), the other �ight line did not have
a suitable deep water area for noise assessment, so the same above
surface noise was assumed. For each pixel 20 noise perturbed
inversions were performed to provide the mean results and 90%
con�dence intervals for the parameters of interest, in particular
LAI and depth.

RESULTS AND DISCUSSION

Variation in Modeled Top of Canopy
Re�ectance
The leaf level re�ectance measurements ofThalassia
and Syringodium (Figure 2) were consistent with those
measured by others for those species and for other seagrasses
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(Lüning and Dring, 1985; Zimmerman, 2003; Runcie and
Durako, 2004; Enríquez, 2005; Thorhaug et al., 2007; Stoughton,
2009) although our re�ectances tended to be higher at the peak
of 550 nm. Consistent withEnríquez (2005)andThorhaug et al.
(2007) the spectral shapes of the leaf re�ectance ofThalassia
and Syringodiumwere almost identical to each other and the
re�ectance ofSyringodiumat 550 nm was slightly higher than
Thalassia(Figure 2).

The �rst question of interest in this study is how the
sources of variation in the 3D canopy model a�ected the top
of canopy re�ectances forThalassiaand Syringodium, and in
particular the relative contribution of variation of leaf level
re�ectance. The input data on re�ectance and absorptance of
ThalassiaandSyringodiumleaves contains a wider variation for
Thalassiathan Syringodium, especially in terms of absorptance

(Figure 2). This has a consequence for the variation in the
top of canopy re�ectance (Figure 4). For Thalassiaat an LAI
of 3 the variation in re�ectance at 630 nm was around three
times greater when leaf level variation is included (Figure 4Bvs.
Figure 4A), whereas forSyringodiumthe variation in re�ectance
was relatively una�ected by the introduction of leaf level variance
(Figure 4D vs. Figure 4C). At a given LAI the “base level”
variation induced by variation in canopy structure and position
was similar forThalassiaand Syringodium(Figures 4A,C); a
small level of variation in leaf optical properties is negligible in
comparison (Figure 4D) but clearly above a certain threshold of
leaf level variation the variation in canopy re�ectance becomes
much greater (Figure 4C). In our dataSyringodiumwas below
this threshold andThalassiawas above it. Whether this level of
variation is appropriate for the spatial scale of the remote sensing

FIGURE 4 | Top of canopy (TOC) re�ectance at 630 nm for modeled(A,B) Thalassiaand (C,D) Syringodiumcanopies under all treatments but differentiated by(A,C)
medium leaf re�ectances only and(B,D) all three leaf re�ectance and absorptance treatments.
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analysis (1–2 m pixels) remains unknown, as the data were not
collected with this objective in mind, this will be discussedlater.

Spectral Separability in Top of Canopy
Re�ectance
Given the level of variation introduced by canopy position,
structure, and leaf level variations (Figure 4) the next question is
how much spectral separability for determining LAI or between
canopy compositions ofThalassiaandSyringodiumremained in
the top of canopy re�ectances? While this will be answered more
comprehensively by the sensitivity analysis an initial bandratio
plot for 450 and 550 nm for all of the modeled canopy re�ectances
indicates that separability in the model data is possible (Figure 5).
Considering LAI �rst (Figure 5B) there was a clear trend of
darkening in both bands where LAI graduates across the plot
area. Despite a few isolated places where, for example, LAIs of
5 were mixed with LAIs of 3, there is a monotonic trend in
LAI in both bands up to LAIs of around 4. This is consistent
with the previousThalassiaonly model (Hedley et al., 2015) and
suggests the introduction ofSyringodiumdoes not compromise
this capability.

The ability to spectrally discriminate species in the modeled
top of canopy re�ectances is less clear (Figure 5A). Syringodium
was distributed in the upper range of the variation with respect
to re�ectance at 550 nm, in part at least because leaf re�ectance
was generally higher at 550 nm (Figure 2), but still overlaps
with Thalassiain the two-band space of 450 and 550 nm. At
any speci�c LAI the species were separable by the ratio of
re�ectance at 550–450 nm (Figure 5C), but for ratio values less
than around eight either species could be present but with
di�erent LAIs. There is a region on the left ofFigure 5A where
only Syringodiumoccurs, corresponding to an LAI greater than
3 (c.f.Figure 5B), this corresponds to re�ectance ratios greater
than 8, where onlySyringodiumoccurs in Figure 5C. In this
regionSyringodiumcould be distinguished fromThalassiain top
of canopy re�ectance using only the bands at 450 and 550 nm.
The basis of this is that in our data at 550 nmSyringodiumleaves
were slightly brighter thanThalassiato an extent that is beyond
the incorporated variation, but at 450 nm they were similar.

Capability for discrimination using all the spectral bands canonly
be greater, but water column variations and above surface noise
will compromise that ability.

Simpli�ed Model for Top of Canopy
Re�ectance
The next set of results veri�ed that the simpli�ed model for top
of canopy re�ectance (Equation 1) for each canopy composition
adequately captured the variations previously discussed. The
question is how much is “lost” going from the 3D model
re�ectances to the simpli�cation of Equation (1). This is also
checked later in the sensitivity analysis, but the �rst evaluation
is to consider the magnitude of the residual spectra between the
3D canopy model re�ectances and those that can be produced
by the simpli�ed model (Figure 6). In all cases the spread of the
residuals was very small compared to the range of re�ectances
captured. For wavelengths lower than 700 nm, over all six models
70% of the 90% con�dence intervals on the residuals were less
than 5% of the re�ectance range, and nowhere were the residual
90% con�dence intervals greater than 10% of the re�ectance
range. Residual ranges greater than 5% of the re�ectance only
occur when leaf level optical variation is introduced. This
indicates that leaf level optical variation does introduce di�erent
modes of variation that can't be captured by a single variation
term (e1, section Top of Water Column Re�ectance Model). But
since the e�ect is small a single error term was retained for this
study.

Sensitivity Analysis—Bathymetry
The sensitivity analysis indicated that the fundamental
uncertainty for bathymetry was very low under all treatments
(Figure 7). Even for the treatment that included the most
sources of variation, including all three canopy compositions
of Thalassia, Syringodium,and 50% mixtures, 90% con�dence
intervals on bathymetry retrieval were better than� 1 m at
10 m depth (Figure 7J). For the other treatments the con�dence
intervals on bathymetry retrieval mirrored the amount of
variation included in the model; the con�dence intervals for
canopy treatments of single composition types with no leaf

FIGURE 5 | Distribution of top of canopy (TOC) re�ectance for all modeled Thalassiaand Syringodiumcanopies with 26� solar zenith angle, in two band space: 450
and 550 nm. (A) Distribution by species,(B) distribution color coded by LAI,(C) band ratio of re�ectance at 550–450 nm, as a function of LAI. Note that all points are
plotted in a random order so the dominance of a color in particular area does not arise simply because other points are obscured.
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FIGURE 6 | Magnitude of discarded residuals for each of the simpli�ed canopy models for (A,B) Thalassia, (C,D) Syringodium, (E,F) 50% mixed canopies of
Thalassiaand Syringodium, and for (A,C,E) canopies where leaf re�ectance is �xed,(B,D,F) variable leaf re�ectance. The upper region of each plot showsthe full
range of re�ectances from all treatments in the 3D canopy model, the lower line shows the magnitude of the discarded residual error when the model is simpli�ed, in
terms of 100, 95, and 75% of the inputs, i.e., 75% of the residuals lie with the bounds of the 75% shaded region.

level variation were particularly narrow (Figures 7A,C,E). That
bathymetry is a robust result under physics based inversion
approaches is well-established (Dekker et al., 2011) and this

result is as expected. What is important here is that introducing
di�erent canopy compositions and leaf level optical variation
made very little di�erence to the fundamental uncertainty in
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FIGURE 7 | Sensitivity analysis results for bathymetry. Dots are 2,500 noise-perturbed self-inversion results, lines are mean 90% con�dence intervals binned in steps
of 0.5 m. Treatments are(A–F) single benthic types ofThalassia, Syringodiumand 50% mixed canopies, plus(G–J) models with multiple bottom types. Right and left
columns are with and without variation in leaf re�ectance.
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bathymetry. However, being an estimate of the uncertainty from
self-inversion of the model this is an upper bound on what could
be expected in a real application. The possibility of errors in
image pre-processing is neglected, for example.

Sensitivity Analysis—Leaf Area Index
Leaf area index was a less robust result than bathymetry
(Figure 8). The con�dence intervals for LAI retrieval are
relatively large, especially for LAIs greater than 2. This
corresponds to the increasing saturation of the LAI e�ect on
re�ectance as canopy re�ectance becomes less, beyond a certain
LAI no further darkening can occur and approaching this limit
uncertainties become high (Figure 5) (Knyazikhin et al., 1998).
In the inversion parameter limits (Table 2) the upper limit on the
LAI con�dence interval is capped at 6 and this explains why the
upper con�dence interval curves toward the horizontal for high
LAIs (Figure 8). The upper limit acts to reduce the uncertainty
and is akin to including thea priori information that LAIs greater
than 6 cannot occur. Includinga priori limits or probabilities is
useful for reducing uncertainty in inversion methods (Jay and
Guillaume, 2016) but is unsuitable if anomalies are of interest
or the bounds are too restrictive. Other seagrass species such
asPosidonia sinuosaand Posidonia oceanicacan achieve much
higher LAIs (e.g.,> 8 reported inCollier et al., 2007; and > 12
reported inOlesen et al., 2002, respectively) and in that case it
would be preferable that the uncertainty accurately re�ectsthis.

Leaf area index was also more sensitive to the speci�c canopy
composition treatment or inclusion of leaf level variation,but
not exceptionally so and without any clear pattern (Figure 8).
Introducing leaf level optical variation in general increased
uncertainty in LAI retrievals, as expected, but the e�ect
was relatively small. Interestingly, without leaf level variation
SyringodiumLAI determinations had higher uncertainty than
for Thalassia(Figure 8C vs. Figure 8A). This was likely the
result canopy position and structure, the longer and thinner
leaves of Syringodium will have a greater e�ect on the
apparent areal density as viewed from above, when they assume
di�erent positions. The higher leaf level variation inThalassia
(Figure 2) more than compensated for this factor and when
leaf level variation was includedThalassiahad slighter higher
uncertainty (Figures 8B,D). Overall though, all treatments
performed similarly, and introducing a model with two species
(Figures 8G,H) or two species plus mixtures (Figures 8I,J) did
not greatly increase the uncertainty in LAI estimation.

Sensitivity Analysis—Canopy Composition
Determining the canopy composition type, either monospeci�c
Thalassiaor Syringodium, or between the two monospeci�c
canopies and 50:50 mixed canopies, would be expected to have
high uncertainty since the spectral shapes ofThalassiaand
Syringodiumleaf optical properties are almost identical (Figure 2,
and Thorhaug et al., 2007). However, as previously mentioned,
in our model a degree of species separability at the top of
canopy exists because theSyringodiumwas relatively brighter
than Thalassiaat 550 nm (Figure 2). The sensitivity analysis
also indicates some capability for species discrimination, in fact
for depths less than 0.5 m the self-inversion analysis was able

to accurately recover the canopy composition type 100% of
the time (Figure 9), hence even including low LAI conditions
that Figure 5 indicated might be inseparable. Therefore, despite
including above surface noise, the top of canopy re�ectances were
spectrally separable to a much greater extent than implied by the
two-band analysis ofFigure 5. This is partly a consequence of
the simpli�ed canopy re�ectance model, which reduces variation
by multiple factors into a single degree of freedom. However,
this issue is not large, when using the original 3D canopy model
re�ectances in the forward model, accuracy in composition type
for depths less than 0.5 m is in the range 60–80% for most
treatments (Figure 9), but by a depth of 4 m the ability to
distinguish canopy type has reduced to around 50–70% and any
artefactual advantage in using the simpli�ed canopy forward
model is lost. This provides an alternative estimate of the “cost”
of the simpli�ed canopy model: At a depth of 4 meters the
above surface noise in relation to the benthic “signal” was already
greater than what was lost in simplifying the canopy model.

Ability to determine canopy composition decreases with
increasing depth (Figure 9). For canopies that can be either
Thalassiaor Syringodium(Figures 9A,B) a random choice would
be correct 50% of the time, so at 10 m depth separability
of � 60% indicates the ability to determine species is almost
completely lost. Likewise for three bottom compositions of
Thalassia, Syringodium, or mixed canopies� 40% accuracy at
10 m is close to a random choice.

It might be expected that the ability to determine species
would increase with LAI, since the “signal” of the species
would be expected to increase with leaf area. This was true
only for treatments that included leaf level optical variation,
and the e�ect was small (Figures 10B,D). For multiple canopy
types where there was no leaf variation, ability to discriminate
canopy composition actually decreased slightly with LAI
(Figures 10A,C). However, these results do not give any strong
indication since overall ability to discriminate canopy typewas
averaged over all depths from 0 to 10 m, the primary conclusion
is depth was the more signi�cant factor (Figure 9).

The sensitivity analysis is therefore pessimistic as regards
the ability to distinguish betweenThalassiaandSyringodiumby
remote sensing. These results should be considered upper bounds
of what is achievable, in the context of what is included in the
model. That is, in any application results can only be worse
unless there is some aspect not included in the model that could
be leveraged to facilitate species discrimination. In Florida Bay
Syringodiumtends to occur bay-side whereasThalassiais ocean-
side, therefore there could be systematic di�erences in water
optical properties co-incident with species that would increase
discrimination. Here, we have only considered clean leaves free
of large epiphytes.Thalassialeaves have a longer life span than
Syringodium, which facilitates the formation of more complex
epiphyte communities on the leaves. The dominant epiphyte taxa
are calcifying red coralline algae, although foraminifera,diatoms,
and other small calci�ers have also been reported (Corlett and
Jones, 2007). Epiphyte cover is greatest at the apical segments
of Thalassialeaves, since these are the oldest part of the leaf.
Being located at the top of the canopy there is good potential
for epiphytes to contribute to the re�ectance. On the other hand,
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FIGURE 8 | Sensitivity analysis results for leaf area index (LAI). Dotsare 2,500 noise-perturbed self-inversion results, lines are mean 90% con�dence intervals binned
in steps of 0.25 in LAI. Treatments are(A–F) single benthic types ofThalassia, Syringodiumand 50% mixed canopies, plus(G–J) models with multiple bottom types.
Right and left columns are with and without variation in leafre�ectance.
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FIGURE 9 | Sensitivity analysis results for the accuracy of canopy composition
type determination as function of depth. Each dot is the overall accuracy from
the uncertainty propagation (20 repeats) of each of the 2,500 noise-perturbed
self-inversions. Dark lines are the mean accuracy binned insteps of 0.5 m.
Thin lines are the mean accuracy when input bottom re�ectances are drawn
directly from the canopy model results. Treatments include(A,B) the model of
two bottom types and (C,D) three bottom types. Each is repeated(B,D) with
and (A,C) without leaf level variance.

red wavelengths, where coralline algae are spectrally distinct,
have low penetration in water so any discrimination advantage
may be limited to the shallowest canopies. The situation will
also vary between canopies since dependent on conditions
some canopies are relatively free of epiphytes and the epiphyte
community follows a progressive process of organization coupled
with leaf age (Cebrián et al., 1999), Understanding the epiphyte
contribution for the purposes of optical modeling is therefore
a complicated task, but these kind of co-incident factors could
explain the relatively reasonable performance of classi�cation
techniques applied to multispectral data (Phinn et al., 2008).

Image Data Analysis
Visually, LAI results from the hyperspectral imagery appeared
reasonable over both theThalassiaandSyringodiumdominated
areas (Figure 11). Sand areas were identi�ed as LAI close to
zero, and denser seagrass areas, especially overSyringodium
dominated locations, contained the full range of LAIs up to 5
or more, which was the limit of discrimination predicted by
the sensitivity analysis (Figure 8). The algorithm output did
highlight some artifacts in the source imagery such as a vertical
line (Figure 11, left LAI image) presumably corresponding to
detector anomaly such as dust contamination. Image-derived
LAI corresponded well toin situ data in terms of both
area-averaged LAI and standard deviation at each location
(Figure 12A). Linear regression of the area-averaged estimated
LAIs against thein situ data yielded anr2 of only 0.32 with

FIGURE 10 | Sensitivity analysis results for the accuracy of canopy
composition type determination as function of leaf area index (LAI). Each dot is
the overall accuracy from the uncertainty propagation (20 repeats) of each of
the 2,500 noise-perturbed self-inversions. Dark lines arethe mean accuracy
binned in steps of 0.25 in LAI. Thin lines are the mean accuracywhen input
bottom re�ectances are drawn directly from the canopy model results.
Treatments include(A,B) the model of two bottom types and (C,D) three
bottom types. Each is repeated(B,D) with and (A,C) without leaf level
variance.

a y-intercept of 1.54 and slope of 0.48 (Figure 12B). However,
it is clear that the method identi�es areas of zero LAI very
well (Figure 11) but there is noin situ data at zero LAI to
represent this. Acknowledging this capability by constraining
the regression to have an intercept at zero gives anr2 of 0.86
and a slope of 1.01 (Figure 12B ). This would seem a more
sensible result given visual interpretation ofFigure 11: zero LAI
areas are not identifed as LAI of 1.54. In general the high
variation exhibited by thein situ LAI point data at a scale of
2 m (the transect sampling distance at each location) is clearly a
confounding factor for validation of a remote sensing analysis. It
places a very high demand on the geo-correction of the imagery
and accuracy of the GPS system. Thein situ data used here
was not collected with this study in mind, for future studies
placing benthic markers that can be identi�ed in the imagery
may be a better solution (Mumby et al., 2004). Nevertheless, both
visually and in comparison to the available data (Figures 11, 12)
LAI estimations from the image data analysis appear reasonably
accurate.

Depths at the eight locations ranged from� 1.5 m to 8 m,
depth estimates from the inversion model agreed well in general
but there was a dependency on LAI (Figure 13). All locations
except T1 were highly heterogeneous in terms of canopy density,
to generateFigure 13the mean estimated depth at 5 pixels with
relatively low LAI within an approximate 20 m radius were taken,
and likewise depth estimates from pixels with relatively high
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FIGURE 11 | Application of inversion model to hyperspectral PRISM imagery in (left) aThalassiadominated area (T2 and T3) and (right) aSyringodiumdominated area
(S1). LAI image is from model containing all bottom compositions, (a–d) show spectral matches for models constrained toThalassiaor Syringodiumonly.
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FIGURE 12 | (A) Leaf area index as estimated from imagery compared toin-situ data, for the �ve sites dominated bySyringodium(S1-S5) and the three byThalassia
(T1-T3). Bars show mean and standard deviation forin-situ data points and for a 4-pixel window around those points. Thenumber of pixels contributing to each bar
varies from 71 to 170. The individual data points at each location are plotted to show the variation that exists at each location. (B) Scatterplot of LAIs fromin-situ data
and 4-pixel window imagery estimates, i.e., the same information as in the bars in(A).

LAI within that area.Figure 13 therefore gives an indication
of the e�ect of LAI on depth estimation at each location. A
regression plot using both low and high LAI results (Figure 13B)
gave anr2 of 0.94 and slope of 1.10. Clearly this is a good
result but the number of data points is too low to make any
strong conclusions. It might be expected that high LAI, giving
rise to darker pixels, would cause depth over-estimation. Indeed
for most cases over low LAI areas (typically bare sand) depth
estimates were quite accurate while for high LAI depth was
over-estimated (Figure 13A, S1, S4, T2, T3, andFigure 13B).
However, the pattern was not always consistent, in fact the
highest LAI areas (S2, S3, LAI greater than 5) gave good depth
estimates. It seems that intermediate LAIs give rise to the largest
potential for depth over-estimation. The largest depth errorswere
greater than the uncertainty in depth estimation predicted bythe
sensitivity analysis over all LAIs (Figure 7J) and the uncertainty
propagation (error bars inFigure 13). The sensitivity analysis
of Figure 7 covers LAIs from 0 to 5, but if the analysis is
restricted to LAIs from 3 to 4 the plots appear almost identical
and the depth uncertainty is still only around� 1 m at 10 m
depth. In comparison at S1 an LAI of 3 gave rise to error of
C1.5 m in a depth of 2.4 m. The true depth at location S1 lies
outside the uncertainty estimates for the high LAI pixels andso
points to either an omission from the model or a radiometric
discrepancy between the model and the image data. In other
words, the spectral re�ectance from the image data does not lie
within the possibilities that can be produced for a depth of 2.4 m
from the forward model. It is worth noting that the parameters
for the optical properties of the water column,P, G, and X, are
not estimated as their minimal or maximal values (Table 2) and
so are not unduly constraining the inversion.

With respect to canopy composition, model inversion
uniformly converged on a solution for monospeci�cThalassia
canopies. Even over theSyringodiumdominated sites (Figure 11,
right, S1) the model almost never selectedSyringodiumcanopies
or a 50:50 mix as giving the best spectral match. The only

exceptions occurred on or around the edges of sand patches
where LAI was close to zero so canopy composition is irrelevant.
The sensitivity analysis suggested that discrimination of species
would be subject to high uncertainty (Figure 9), but that one
bottom type is systematically chosen in all cases indicates an issue
of the radiometric alignment of the model with the image pixel
re�ectances, since the expected outcome under high uncertainty
would be random bottom composition.

Sensitivity Analysis vs. Image Data Results
While overall the results for LAI and depth are reasonable, a
few discrepancies have arisen between the performance predicted
by the sensitivity analysis and the performance demonstrated
by application to image data. The sensitivity analysis and
uncertainty propagation are based on the assumption that the
forward model is (1) radiometrically aligned with the image
re�ectances, i.e., ideally both the model is accurate and the image
data is radiometrically accurate, or at least they are systematically
comparable; and (2) that the model incorporates all possible
sources of variation that could occur over the application area.
If either condition is not met, then the behavior when applying
the model to the image data will lead to results outside the scope
of the sensitivity analysis.

The spectral matches achieved were in general very good
(Figures 11a–d). Over either the Thalassia or Syringodium
dominated sites when the model was constrained to only allow
one composition type, then eitherThalassiaor Syringodium
canopies were capable of generating spectra that matched
the overall shape of the image re�ectances, and which were
virtually indistinguishable from each other (Figures 11a–d). It
is therefore not surprisingThalassiaandSyringodiumcould not
be discriminated in the image data, any spectral di�erence in
the forward model due to canopy composition was negligible
in comparison to the residual �t between the model and image
data. One reason that theThalassiacomposition is preferentially
selected may be that theThalassiacanopy model contains more
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FIGURE 13 | (A) Depth estimates for the �ve sites dominated bySyringodium(S1-S5) and the three byThalassia(T1-T3). Low LAI and high LAI are each averages
over 5 pixels within an approximate 20 m radius of the location center, selected as examples of low and high LAI pixels. Error bars are the mean of the upper and
lower 90% con�dence intervals from the uncertainty propagation. (B) Scatterplot of actual depth against estimated depths over low and high LAI locations, i.e. the
same data as(A).

leaf level optical variation that doesSyringodium(Figure 2) so
the greater degree of freedom permits a marginally closer match
than is possible with theSyringodiummodel. This implies that
incorporating uncertainty could bias the inversion when the
model and re�ectances aren't exactly radiometrically aligned, and
this may be a limitation of the approach. How much variation
is the correct amount to include in the canopy modeling is also
di�cult to assess. Strictly it should be the pixel-to-pixel variation
at the scale of image pixels within the spatial domain of the
application, but to quantify this is unrealistic. A better approach
may be to standardize the amount of optical variation between
species, as this might remove the bias or at least reveal the extent
by which the inversion was biased by di�erences in uncertainty.

The spectral matches from the model at theSyringodium
dominated site S1 (Figures 11c,d) do not fully capture the
chlorophyll absorption features in wavelengths from 570 nm
upward (Je�ery et al., 1997). The model is a smoother
approximation because the 3D canopy model operates at
20 nm resolution. Improving the spectral resolution of the
canopy model may help match these chlorophyll features and
disambiguate increased LAI from increased depth, although that
issue primarily a�icted the deeper site where these features are
almost absent in the image data (Figures 11a,b). These spectral
features are unlikely to assist in species discrimination since they
are also present in re�ectances from the shallowThalassiasite
(T3, data not shown). In particular the shoulder at 570 to 585 nm
and re�ectance peaks at� 645 nm and� 690 are ubiquitous and
arise from features also visible in the leaf level re�ectances for
both species (Figure 2).

The �ight line over theSyringodiumsite S1 (Figures 11c,d)
contained much more spectral noise up to 550 nm than for
the Thalassiasites (Figures 11a,b). However, the band-to-band
noise appears to average out satisfactorily with respect to the
overall spectral �t. The documented signal to noise ratio of the

PRISM instrument is more than adequate for this application. By
the sensitivity analysis parameterization (Table 2) the re�ectance
change at 550 nm to detect 1 m change in depth at a depth
of 10 m over a canopy of LAI 4 is 0.8% of the re�ectance
for bare sand at zero depth (the brightest target required for
subsurface applications). This dynamic range would be covered
by a signal to noise ratio (SNR) of 120 and 8-bit digitization,
while PRISM is 14-bit with an SNR of 200 per band, and much
greater when bands are combined as they are here (since �tting a
spectrum is a e�ectively a kind of band-averaging) (Mouroulis
et al., 2014). So for hyperspectral imagers such as PRISM the
radiometric limiting factors, especially for physics based aquatic
applications, lie not in the instrument speci�cations but in the
data processing (see alsoGoodman et al., 2008; Hedley et al.,
2012b). Since here discrepancies between the sensitivity analyses
and practical performance appear to be due to radiometric
di�erences between the model and data, this suggests future
model based sensitivity analyses should include a term for
“radiometric discrepancy.” That is, regardless of the causeof such
a discrepancy (atmospheric correction issues, model inadequacy,
etc.) it seems overly optimistic that such a term should be
zero. The common practice of relying entirely on a sensor
or environmental noise characterization (Brando et al., 2009;
Hedley et al., 2012b, 2015; Garcia et al., 2014) is not really
adequate to predict practical performance.

Implications for Remote Sensing of
Seagrasses
In this study, the sensitivity analysis suggested the ability to
discriminate betweenT. testudiniumand S. �liforme by remote
sensing is at best weak. In a practical application re�ectance
spectra arising from either canopy were virtually identical,with
di�erences below the accuracy of the radiometric alignment
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of the model with imagery data. The situation with respect
to other species may be better,Fyfe (2003)indicated that
Zostera capricorni, Posidonia australis, andHalophila ovaliswere
separable in terms of leaf re�ectance, but that study did not
include other sources of variability at remote sensing scales.
For those species spectral matching may be more e�ective if
the matching were weighted on wavelength regions in which
discrimination is possible, but this would be at the cost of other
factors such as depth determination.

On the other hand, a physics-based approach with spectral
matching may not be the best way to extract species information.
Phinn et al. (2008)demonstrated a weak ability to map seagrass
species using a classi�cation approach on 54-band CASI data
(Compact Airborne Spectrographic Imager). Of eight classes of
canopy composition (including �ve species) around three classes
were identi�ed with overall accuracies greater than around40%.
However, the classi�cation applied inPhinn et al. (2008)was
based on top of water column re�ectances, so if for example
species were associated with depth then the classi�cation can
use this information since it is also contained in the re�ectance
spectra. Classi�cation approaches are in general able to use
whatever information is present in the re�ectances they are
presented with, so results can be better but are site-speci�c and
contingent on training data being representative of the entire site.

Phinn et al. (2008)were able to identify four classes of leaf
projected area with around 50% accuracy in depths to 3 m.
Direct comparison is di�cult but if LAI here is treated as four
classes from 0 to 6 with step 1.5, then 4 of the 8 locations
in Figure 12represent correct classi�cations (so also 50%), but
that includes depths to 8 m and the two deep points are those
with greatest relative error. The performance of the physics-
based method and the classi�cation approach for LAI would
certainly appear to be comparable, the physics based method is
possibly better but the geolocation ofin situ data in the imagery
is insu�cient conclude this. Empirical regression methods using
band-pair depth invariant indices (Mumby et al., 1997) have
reported calibration data correlations ofr D 0.83 in depths to
10 m. However, being a calibration plot the �gure fromMumby
et al. (1997)(their Figure 4) is more directly comparable to the
sensitivity analyses here (Figure 8). Together these underline
that the information is present to achieve the LAI accuracy
predicted by the sensitivity analysis, but practically accessing that
information and relating it toin situdata is challenging. The most
successful demonstrable benthic mapping results occurred in
studies wherein situ data collection was tailored for the objective
in mind. In particular, with calibrated visual assessment methods
the in situLAI estimation is performed in a way that is closer to
remote sensing, i.e., by visual assessment (Mumby et al., 1997;
Knudby and Nordlund, 2011), so it is likely that good match
between remote sensing andin situ data can be achieved.

CONCLUSIONS

The capability for mapping two species of seagrass,
T. testudiniumand S. �liforme, using a physics-based model
inversion method was investigated. A key aspect of the model

was that variations (uncertainties) were included at all levels,
from individual leaf re�ectances, through canopy structure,
the water column and the air-water interface. The results were
consistent with the performance of a previously developed
single species model that lacked leaf re�ectance variation
(Hedley et al., 2015). LAI estimates were reasonable within
the limitations of the in situ data available for assessment.
Depth estimates were in many cases accurate down to 8 m but
increasing LAI tended to cause depth over-estimation, especially
for intermediate LAI values.T. testudiniumandS. �liformecould
not be distinguished by remote sensing re�ectance alone, dueto
their spectral similarity. Canopies of other seagrass speciesmay
be more spectrally distinct, and discrimination could be aided
by making use of information on ecological zonation, perhaps
in a Bayesian framework. The presence of epiphytes such as
encrusting coralline red algae onThalassialeaves but noton
those ofSyringodiummay be worth investigating but any spectral
features will be a small component of the re�ectance and may
not be detectable at remote sensing scales. Spectral matchingto
chlorophyll features of the canopy re�ectance could be improved
by increasing the spectral resolution of the 3D canopy model.
Although this would be computationally expensive and there
is no clear indication from this study that any improvements
would result. With respect to environments dominated by
ThalassiaandSyringodiuma better algorithm design might be to
focus on LAI and relegate species as a contributor to variability
in canopy structure rather than a remote sensing objective.
Practical considerations of collecting and aligningin situ data
with imagery are a major limiting factor in demonstrating the
capability of methods, this aspect of the experimental design
requires careful consideration in order to advance benthic
remote sensing methods.

Examination of the sensitivity analysis and model
parameterization highlighted the challenges involved in fully
exploiting hyperspectral data using model inversion methods.
In particular in the absence of exact radiometric alignment
between model and the hyperspectral imagery, there can be
a complex relationship between uncertainty and the spectral
matching process: features with higher uncertainty may permit a
closer spectral �t to “noise” and hence be preferentially selected.
Sensitivity analyses should be interpreted with caution since
they are always an upper bound on what can be achieved. Here,
in practice there was a greater confusion between depth and
LAI than was predicted by the sensitivity analysis. This suggests
that future work on predicting remote sensing capability should
consider a “radiometric discrepancy” term in addition to sensor
and environmental noise. While the aim is that such a term
should be zero, in practice, considering the challenges inherent
in atmospheric and surface re�ectance corrections, that is likely
an overly optimistic assumption.
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